Journal of Mathematical Imaging and Vision

, Volume 42, Issue 1, pp 64-75

First online:

Open Access This content is freely available online to anyone, anywhere at any time.

Multiplicative Calculus in Biomedical Image Analysis

  • Luc FlorackAffiliated withDepartment of Mathematics & Computer Science and Department of Biomedical Engineering, Eindhoven University of Technology Email author 
  • , Hans van AssenAffiliated withDepartment of Biomedical Engineering, Eindhoven University of Technology


We advocate the use of an alternative calculus in biomedical image analysis, known as multiplicative (a.k.a. non-Newtonian) calculus. It provides a natural framework in problems in which positive images or positive definite matrix fields and positivity preserving operators are of interest. Indeed, its merit lies in the fact that preservation of positivity under basic but important operations, such as differentiation, is manifest. In the case of positive scalar functions, or in general any set of positive definite functions with a commutative codomain, it is a convenient, albeit arguably redundant framework. However, in the increasingly important non-commutative case, such as encountered in diffusion tensor imaging and strain tensor analysis, multiplicative calculus complements standard calculus in a truly nontrivial way. The purpose of this article is to provide a condensed review of multiplicative calculus and to illustrate its potential use in biomedical image analysis.


Multiplicative calculus Non-Newtonian calculus Diffusion tensor imaging Cardiac strain tensor analysis Positivity