Journal of Mathematical Imaging and Vision

, Volume 42, Issue 1, pp 64–75

Multiplicative Calculus in Biomedical Image Analysis

Authors

    • Department of Mathematics & Computer Science and Department of Biomedical EngineeringEindhoven University of Technology
  • Hans van Assen
    • Department of Biomedical EngineeringEindhoven University of Technology
Open AccessArticle

DOI: 10.1007/s10851-011-0275-1

Cite this article as:
Florack, L. & van Assen, H. J Math Imaging Vis (2012) 42: 64. doi:10.1007/s10851-011-0275-1

Abstract

We advocate the use of an alternative calculus in biomedical image analysis, known as multiplicative (a.k.a. non-Newtonian) calculus. It provides a natural framework in problems in which positive images or positive definite matrix fields and positivity preserving operators are of interest. Indeed, its merit lies in the fact that preservation of positivity under basic but important operations, such as differentiation, is manifest. In the case of positive scalar functions, or in general any set of positive definite functions with a commutative codomain, it is a convenient, albeit arguably redundant framework. However, in the increasingly important non-commutative case, such as encountered in diffusion tensor imaging and strain tensor analysis, multiplicative calculus complements standard calculus in a truly nontrivial way. The purpose of this article is to provide a condensed review of multiplicative calculus and to illustrate its potential use in biomedical image analysis.

Keywords

Multiplicative calculus Non-Newtonian calculus Diffusion tensor imaging Cardiac strain tensor analysis Positivity

Copyright information

© The Author(s) 2011