Skip to main content
Log in

An Augmented Lagrangian Method for TV g +L 1-norm Minimization

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper, the minimization of a weighted total variation regularization term (denoted TV g ) with L 1 norm as the data fidelity term is addressed using the Uzawa block relaxation method. The unconstrained minimization problem is transformed into a saddle-point problem by introducing a suitable auxiliary unknown. Applying a Uzawa block relaxation method to the corresponding augmented Lagrangian functional, we obtain a new numerical algorithm in which the main unknown is computed using Chambolle projection algorithm. The auxiliary unknown is computed explicitly. Numerical experiments show the availability of our algorithm for salt and pepper noise removal or shape retrieval and also its robustness against the choice of the penalty parameter. This last property is useful to attain the convergence in a reduced number of iterations leading to efficient numerical schemes. The specific role of the function g in TV g is also investigated and we highlight the fact that an appropriate choice leads to a significant improvement of the denoising results. Using this property, we propose a whole algorithm for salt and pepper noise removal (denoted UBR-EDGE) that is able to handle high noise levels at a low computational cost. Shape retrieval and geometric filtering are also investigated by taking into account the geometric properties of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alliney, S.: Digital filters as absolute norm regularizers. IEEE Trans. Signal Process. 40(6), 1548–1562 (1992)

    Article  MATH  Google Scholar 

  2. Alliney, S.: Recursive median filters of increasing order: a variational approach. IEEE Trans. Signal Process. 44(6), 1346–1354 (1996)

    Article  Google Scholar 

  3. Alliney, S.: A property of the minimum vectors of a regularizing functional defined by means of the absolute norm. IEEE Trans. Signal Process. 45(4), 913–917 (1997)

    Article  Google Scholar 

  4. Aujol, J.F., Chambolle, A.: Dual norms and image decomposition models. Int. J. Comput. Vis. 63(1), 85–104 (2005)

    Article  MathSciNet  Google Scholar 

  5. Aujol, J.F., Gilboa, G., Chan, T.F., Osher, S.: Structure-texture image decomposition - modeling, algorithms, and parameter selection. Int. J. Comput. Vis. 67(1), 111–136 (2006)

    Article  Google Scholar 

  6. Bar, L., Sochen, N.A., Kiryati, N.: Image deblurring in the presence of salt-and-pepper noise. In: Kimmel, R., Sochen, N.A., Weickert, J., Scale-Space. Lecture Notes in Computer Science, vol. 3459, pp. 107–118. Springer, Berlin (2005)

    Google Scholar 

  7. Bertsekas, D.: Constrained Optimization and Lagrange Multipliers Methods. Academic Press, New York (1982)

    Google Scholar 

  8. Bonnans, J.F., Gilbert, J., Lemaréchal, C., Sagastizabal, C.: Numerical Optimization: Theoretical and Numerical Aspects. Springer, Berlin (2003)

    MATH  Google Scholar 

  9. Bresson, X., Chan, T.F.: Active contours based on Chambolle’s mean curvature motion. In: ICIP (1), pp. 33–36. IEEE (2007)

  10. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28, 151–167 (2007)

    Article  MathSciNet  Google Scholar 

  11. Cai, J., Chan, R., Nikolova, M.: Two-phase methods for deblurring images corrupted by impulse plus Gaussian noise. Inverse Probl. Imaging 2, 187–204 (2008)

    MATH  MathSciNet  Google Scholar 

  12. Cai, J., Chan, R., Nikolova, M.: Fast two-phase image deblurring under impulse noise. J. Math. Imaging Vis. 36(1), 46–53 (2009)

    Article  Google Scholar 

  13. Caselles, V., Catte, F., Coll, T., Dibos, F.: A geometric model for active contours. Numer. Math. 66, 1–31 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Computer Vis. 22, 61–79 (1997)

    Article  MATH  Google Scholar 

  15. Chambolle, A.: An algorithm for total variation minimization and applications J. Math. Imaging Vis. 20(1–2), 89–97 (2004)

    MathSciNet  Google Scholar 

  16. Chambolle, A.: Total variation minimization and a class of binary MRF models. In: Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 136–152 (2005)

  17. Chambolle, A.: Total variation minimization and class of binary MRF models. In: Energy Minimization Methods in Computer Vision and Pattern Recognition. Lecture Notes in Computer Science, vol. 3757, pp. 136–152. Springer, Berlin (2005)

    Chapter  Google Scholar 

  18. Chan, R., Ho, C., Nikolova, M.: Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Trans. Image Process. 14(15), 1479–1485 (2005)

    Article  Google Scholar 

  19. Chan, R., Hu, C., Nikolova, M.: An iterative procedure for removing random-valued impulse noise. IEEE Signal Process. Lett. pp. 921–924 (2004)

  20. Chan, T., Golub, G., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Chan, T.F., Esedoglu, S.: Aspects of total variation regularized L1 function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2004)

    Article  MathSciNet  Google Scholar 

  22. Chan, T.F., Vese, L.A.: Active contour without edges. IEEE Trans. Image Process. 10, 266–277 (2001)

    Article  MATH  Google Scholar 

  23. Chen, T., Wu, H.: Space variant median filters for the restoration of impulse noise corrupted images. IEEE Trans. Circuits Syst. II 48(8), 784–789 (2001)

    Article  MATH  Google Scholar 

  24. Darbon, J.: Total variation minimization with L1 data fidelity as a contrast invariant filter. In: International Symposium on Image and Signal Processing and Analysis, pp. 221–226. Zagreb, Croatia (2005)

  25. Darbon, J., Sigelle, M.: Image restoration with discrete constrained total variation part I: Fast and exact optimization. J. Math. Imaging Vis. 26(3), 261–271 (2006)

    Article  MathSciNet  Google Scholar 

  26. Darbon, J., Sigelle, M.: Image restoration with discrete constrained total variation part II: Levelable functions, convex priors and non convex cases. J. Math. Imaging Vis. 26(3), 277–291 (2006)

    Article  MathSciNet  Google Scholar 

  27. De Haan, G., Lodder, R.: De-interlacing of video data using motion vectors and edge information. In: International Conference on Consumer Electronics, pp. 70–71 (2002)

  28. Duval, V., Aujol, J., Gousseau, Y.: the TVL1 model: a geometric point of view. Multiscale Model. Simul. 8(1), 154–189 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ekland, I., Temam, R.: Convex Analysis and Variational Problems. SIAM, Philadelphia (1999)

    Google Scholar 

  30. Eng, H., Ma, K.: Noise adaptive soft-switching median filter. IEEE Trans. Image Process. 10(2), 242–251 (2001)

    Article  MATH  Google Scholar 

  31. Fleming, W., Rishel, R.: An integral formula for total gradient variation. Arch. Math. 11, 218–222 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  32. Fortin, M., Glowinski, R.: Augmented Lagrangian Methods: Application to the Numerical Solution of Boundary-Value Problems. North-Holland, Amsterdam (1983)

    Google Scholar 

  33. Fu, H., Ng, M.K., Nikolova, M., Barlow, J.L.: Efficient minimization methods of mixed l2-l1 and l1-l1 norms for image restoration. SIAM J. Sci. Comput. 27(6), 1881–1902 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Glowinski, R., Tallec, P.L.: Augmented Lagrangian and Operator-splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)

    MATH  Google Scholar 

  35. Grasmair, M.: Locally adaptive total variation regularization. In: Scale Space and Variational methodsin computer Vision, pp. 331–342 (2009)

  36. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–332 (1988)

    Article  Google Scholar 

  37. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Gradient flows and geometric active contour models. In: International Conference on Computer Vision, pp. 810–815. Boston, USA (1995)

  38. Koko, J.: Uzawa block relaxation domain decomposition method for the two-body contact problem with Tresca friction. Comput. Methods. Appl. Mech. Engrg. 198, 420–431 (2008)

    Article  MathSciNet  Google Scholar 

  39. Luenberger, D.: Linear and Nonlinear Programming. Addison-Wesley, Reading (1989)

    Google Scholar 

  40. Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 22–26 (1985)

  41. Nikolova, M.: Minimizers of cost-functions involving nonsmooth data-fidelity terms, application to the processing of outliers. SIAM J. Numer. Anal. 40(3), 965–994 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  42. Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20(1–2), 99–120 (2004)

    Article  MathSciNet  Google Scholar 

  43. Nikolova, M., Esedoglu, S., Chan, T.F.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. App. Math. 66(5), 1632–1648 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  44. Osher, S.J., Paragios, N.: Geometric Level Set Methods in Imaging, Vision, and Graphics. Springer, Berlin (2003)

    MATH  Google Scholar 

  45. Rudin, L., Osher, S.: Total variation based image restoration with free local constraints. In: ICIP, vol. 1, pp. 31–35. Austin, Texas (1994)

  46. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  47. Soille, P.: Morphological Image Analysis. Springer, Berlin/Heidelberg (1999)

    MATH  Google Scholar 

  48. Wang, Z., Zhang, D.: Progressive switching median filter for the removal of impulse noise from highly corrupted images. IEEE Trans. Circuits Syst. II 46(1), 78–80 (1999)

    Article  Google Scholar 

  49. Weiss, P., Aubert, G., Blanc-Feraud, L.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31(3), 2047–2080 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  50. Yin, W., Goldfarb, D., Osher, S.: The total variation regularized L1 model for multiscale decomposition. Multiscale Model. Simul. 6(1), 190–211 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  51. Zhang, S., Karim, M.: A new impulse detector for switching median filter. IEEE Signal Process. Lett. 9(11), 360–363 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Koko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koko, J., Jehan-Besson, S. An Augmented Lagrangian Method for TV g +L 1-norm Minimization. J Math Imaging Vis 38, 182–196 (2010). https://doi.org/10.1007/s10851-010-0219-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-010-0219-1

Keywords

Navigation