1.

V. Bafna, S.S. Muthukrishnan, and R. Ravi, “Computing similarity between rna strings,” in *Proceedings of the Sixth Symposium on Combinatorial Pattern Matching LNCS 937 (CPM’95)*, 1995, pp. 1–16.

2.

T.F. Banchoff and P.J. Giblin, “Global theorems for symmetry sets of smooth curves and polygons in the plane,” in *Proceedings of the Royal Society of Edinburgh*, 1987, Vol. 106(A), pp. 221–231.

3.

A. Belyaev and S. Yoshizawa. “On evolute cusps and skeleton bifurcations,” in *SMI 2001 International Conference on Shape Modeling and Applications*, IEEE Computer Society, 2001, pp. 134–140.

4.

S. Betelu, G. Sapiro, A. Tannenbaum, and P. Giblin, “Noise-resistant affine skeletons of planar curves,” in *Proceedings of the 6th European Conference on Computer Vision (2000)* LNCS 1842, 2000, Vol. 1842, pp. 742–754.

5.

A. Blake and M. Taylor, “Planning planar grasps of smooth contours,” in *Proceedings IEEE International Conference on Robotics and Automation*, 1993, Vol. 2, pp. 834–839.

6.

A. Blake, M. Taylor, and A. Cox, “Grasping visual symmetry,” in *Proceedings Fourth International Conference on Computer Vision*, 1993, pp. 724–733.

7.

H. Blum, “Biological shape and visual science (part i),”

*Journal of Theoretical Biology*, Vol. 38, pp. 205–287, 1973.

MathSciNetCrossRefGoogle Scholar8.

S. Bouix and K. Siddiqi, “Divergence-based medial surfaces,” in *Proceedings of the 6th European Conference on Computer Vision (2000)* LNCS 1842, Vol. 1842, 2000, pp. 603–620.

9.

J.W. Bruce and P. J. Giblin, *Curves and Singularities*. Cambridge University Press, 1984.

10.

J.W. Bruce and P.J. Giblin, “Growth, motion and 1-parameter families of symmetry sets.” in *Proceedings of the Royal Society of Edinburgh*, 1986, Vol. 104(A), pp. 179–204.

11.

J.W. Bruce, P.J. Giblin, and C. Gibson, “Symmetry sets,” *Proceedings of the Royal Society of Edinburgh*, 1985, Vol. 101(A), pp. 163–186

12.

P. Dimitrov, J.N. Damon, and K. Siddiqi, “Flux invariants for shape,” *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2003, Vol. 1, pp. 835–841.

13.

P. Dimitrov, C. Phillips, and K. Siddiqi, “Robust and efficient skeletal graphs,” in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2000, Vol. 1, pp. 417–423.

14.

P.J. Giblin and B.B. Kimia, “On the intrinsic reconstruction of shape from its symmetries,”

*IEEE Transactions on Pattern Analysis and Machine Intelligence*, Vol. 25, No. 7, pp. 895–911, July 2003.

CrossRefGoogle Scholar15.

P.J. Giblin and B.B. Kimia, “On the local form and transitions of symmetry sets, medial axes, and shocks,”

*International Journal of Computer Vision*, Vol. 54, No. 1/2, pp. 143–156, 2003.

MATHCrossRefGoogle Scholar16.

P.J. Giblin and G. Sapiro, “Affine-invariant distances, envelopes and symmetry sets,”

*Geometriae Dedicata*, Vol. 71, No. 3, pp. 237–262, 1998.

MATHMathSciNetCrossRefGoogle Scholar17.

P.J. Giblin and G. Sapiro, “Affine invariant medial axis and skew symmetry.” *Computer Vision, 1998. Sixth International Conference on*, 1998, pp. 833–838.

18.

J. Gomes and O. Faugeras, “Reconciling distance functions and level sets,” in *Scale-Space Theories in Computer Vision. Second International Conference, Scale-Space ’99. in: Proceedings (Lecture Notes in Computer Science)*, Vol. 1682, 1999, pp. 70–81. or: *Journal of Visual Communication and Image Representation*, Vol. 11, No. 2, pp. 209–223, 2000, and *Level Sets and Distance Functions*, ECCV 2000, LNCS 1842, pp. 588–602.

19.

M. Hisada, A.G. Belyaev, and T.L. Kunii, “Towards a singularity-based shape language: Ridges, ravines, and skeletons for polygonal surfaces,”

*Soft Computing*, Vol. 7, No. 1, pp. 45–52, 2002.

MATHCrossRefGoogle Scholar20.

P.A. Holtom, *Affine-Invariant Symmetry Sets*. PhD thesis, University of Liverpool, 2000.

21.

T. Jiang, G. Lin, B. Ma, and K. Zhang, “A general edit distance between two RNA structures,” *Journal of Computational Biology*, Vol. 9, No. 2, pp. 371–388, 2002. Also appeared in RECOMB’01.

22.

S.N. Kalitzin, B.M. ter Haar Romeny, A.H. Salden, P.F.M. Nacken, and M.A. Viergever, “Topological numbers and singularities in scalar images. Scale-space evolution properties,”

*Journal of Mathematical Imaging and Vision*, Vol. 9, No. 3, pp. 253–296, 1998.

MATHMathSciNetCrossRefGoogle Scholar23.

B.B. Kimia, “On the role of medial geometry in human vision,”

*Journal of Physiology—Paris*, Vol. 97, Nos. 2–3, pp. 155–190, 2003.

Google Scholar24.

A. Kuijper, “Computing symmetry sets from 2D shapes,” Technical Report TR-2003-36, IT University of Copenhagen, 2003. ISBN 87-7949-049-2.

25.

A. Kuijper, “On data structures from symmetry sets of 2D shapes,” Technical Report TR-2004-47, IT University of Copenhagen, 2004. ISBN 87-7949-069-7.

26.

A. Kuijper. Pre-symmetry sets of 3D shapes. In Olesen et al.[33], 2005, pp. 36–48.

27.

A. Kuijper and O.F. Olsen, “On extending symmetry sets for 2D shapes,” in *Proceedings of the Joint IAPR International Workshops on Syntactical and Structural Pattern Recognition (SSPR 2004) and Statistical Pattern Recognition (SPR 2004)* Lisbon, Portugal, LNCS 3138, 2004, pp. 512–520.

28.

A. Kuijper and O.F. Olsen, Computing 3D symmetry sets; a case study. In Olsen et al. [33], 2005, pp. 193–204

29.

A. Kuijper and O.F. Olsen, “Geometrical skeletonization using the symmetry set,” in *IEEE Proceedings of the International Conference on Image Processing—ICIP 2005*, Genova, Italy, 2005, Vol. I, pp. 497–500.

30.

A. Kuijper and O.F. Olsen, “Matching 2D shapes using the symmetry set,” Technical Report TR-2005-65, IT University of Copenhagen, 2005. ISBN 87-7949-095-6.

31.

A. Kuijper, O.F. Olsen, P.J. Giblin, Ph. Bille, and M. Nielsen, “From a 2D shape to a string structure using the symmetry set,” in *Proceedings of the 8th European Conference on Computer Vision*, LNCS 3022, 2004, Vol. II, pp. 313–326.

32.

T.L. Kunii, A.G. Belyaev, E.V. Anoshkina, S. Takahashi, R. Huang, and O.G. Okunev, “Hierarchic shape description via singularity and multiscaling,” in *Computer Software and Applications Conference, 1994. COMPSAC 94. Proceedings., Eighteenth Annual International*, IEEE Comput. Soc. Press, 1994, pp. 242–251.

33.

O.F. Olsen, L.M.J. Florack, and A. Kuijper (Ed.), *Deep Structure, Singularities, and Computer Vision*, vol. 3753 of *Lecture Notes in Computer Science*. Springer-Verlag, Berlin Heidelberg, 2005.

34.

S. Osher and N. Paragios (Ed.), *Geometric Level Set Methods in Imaging, Vision, and Graphics*. Springer, 2003.

35.

M. Pelillo, K. Siddiqi, and S. Zucker, “Matching hierarchical structures using association graphs,”

*IEEE Transactions on Pattern Analysis and Machine Intelligence*, Vol. 21, No. 11, pp. 1105–1120, 1999.

CrossRefGoogle Scholar36.

R.J. Morris, “The use of computer graphics for solving problems in singular- ity theory,” in H.-C.Hege and K.Polthier (Eds.),

*Visualization in Mathematics*, Springer-Verlag, 1997, pp. 53–66. See also

http://www.amsta.leeds.ac.uk/rjm/lsmp/.

37.

H. Rom and G. Medioni, “Hierarchical decomposition and axial shape description,”

*IEEE Transactions on Pattern Analysis and Machine Intelligence*, Vol. 15, No. 10, pp. 973–981, 1993.

CrossRefGoogle Scholar38.

T.B. Sebastian, P.N. Klein, and B.B. Kimia, “Recognition of shapes by editing shock graphs,” in *Proceedings of the 8th International Conference on Computer Vision*, 2001, pp. 755–762.

39.

T.B. Sebastian, P.N. Klein, and B.B. Kimia, “shock-based indexing into large shape databases,” in *Proceedings of the 7th European Conference on Computer Vision* (Copenhagen, Denmark, May 28–31, 2002), LNCS 2352, 2002, pp. 731–746.

40.

J.A. Sethian, “Fast marching methods,”

*SIAM Review*, Vol. 41, No. 2, pp. 199–235, 1999.

MATHMathSciNetCrossRefGoogle Scholar41.

K. Siddiqi, B.B. Kimia, A. Tannenbaum, and S.W. Zucker, “Shapes, shocks and wiggles,”

*Image and Vision Computing*, Vol. 17, pp. 365–373, 1999.

CrossRefGoogle Scholar42.

K. Siddiqi and B.B. Kimia, A shock grammar for recognition. *Proceedings CVPR ’96*, 1996, pp. 507–513.

43.

K. Siddiqi, A. Shokoufandeh, S. Dickinson, and S. Zucker, “Shock graphs and shape matching,”

*International Journal of Computer Vision*, Vol. 30, pp. 1–22, 1999.

Google Scholar44.

K. Siddiqi, A. Tannenbaum, and S.W. Zucker, “A hamiltonian approach to the eikonal equation,” in E.R. Hancock and M. Pelillo (Eds.), *Energy Minimization Methods in Computer Vision and Pattern Recognition. Second International Workshop, EMMCVPR’99. Proceedings (Lecture Notes in Computer Science)*, Vol. 1654, pp. 1–13, Springer-Verlag, 1999.

45.

K. Siddiqi, S. Bouix, A. Tannenbaum, and S.W. Zucker, “Hamilton-Jacobi skeletons,”

*International Journal of Computer Vision*, Vol. 48, No. 3, pp. 215–231, 2002.

MATHCrossRefGoogle Scholar46.

H. Tek and B.B. Kimia, “Perceptual organization via the symmetry map and symmetry transforms,” in *Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No. PR00149)*, Vol. 2, pp. 471–477, 1999.

47.

H. Tek and B.B. Kimia, “Symmetry maps of free-form curve segments via wave propagation,” in *Proceedings of the Seventh IEEE International Conference on Computer Vision*, 1999, Vol. 1, pp. 362–369.

48.

H. Tek and B.B. Kimia, “Boundary smoothing via symmetry transforms,”

*Journal of Mathematical Imaging and Vision*, Vol. 14, No. 3, pp. 211–223, 2001.

MATHCrossRefGoogle Scholar49.

S. Wolfram (Ed.),

*The Mathematica Book*. 5th edition Wolfram Media/Cambridge University Press, Cambridge, 2003. See also

http://www.wolfram.com.

50.

M.W. Wright, R. Cipolla, and P.J. Giblin, “Skeletonization using an extended euclidean distance transform,”

*Image and Vision Computing*, Vol. 13, No. 5, pp. 367–375, 1995.

CrossRefGoogle Scholar51.

D. Zhang and G. Lu, “Review of shape representation and description techniques,”

*Pattern Recognition*, Vol. 37, No. 1, pp. 1–19, 2004.

CrossRefGoogle Scholar