EdgeForming Methods for Image Zooming
 Youngjoon Cha,
 Seongjai Kim
 … show all 2 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
The article is concerned with edgeforming methods to be applied as a postprocess for image zooming. Image zooming via standard interpolation methods often produces the socalled checkerboard effect, in particular, when the magnification factor is large. In order to remove the artifact and to form reliable edges, a nonlinear semidiscrete model and its numerical algorithm are suggested along with anisotropic edgeforming numerical schemes. The algorithm is analyzed for stability and choices of parameters. For image zooming by integer factors, a few iterations of the algorithm can form clear and sharp edges for grayscale images. Various examples are presented to show effectiveness and efficiency of the newlysuggested edgeforming strategy.
 Blomgren, P.V., Chan, T.F. (1998) Color TV: Total variation methods for restoration of vector valued images. IEEE Trans. Image Processing 7: pp. 304309 CrossRef
 Bramble, J., Pasciak, J.H., Sammon, P.H., Thomée, V. (1989) Incomplete iterations in multistep backward difference methods for parabolic problems with smooth and nonsmooth data. Math. Comp. 52: pp. 339367 CrossRef
 Carey, W., Chuang, D., Hemami, S. (1999) Regularitypreserving image interpolation. IEEE Trans. Image Process 8: pp. 12931297 CrossRef
 Y. Cha and S. Kim, “Edgeforming methods for color image zooming,” (accepted to IEEE Trans. Image Process).
 Chan, T., Wong, C. (1998) Total variation blind deconvolution. IEEE Trans. Image Process 7: pp. 370375 CrossRef
 Chan, T.F., Shen, J. (2000) Variational restoration of nonflat image features: Models and algorithms. SIAM Journal of Applied Mathematics 61: pp. 13381361 CrossRef
 J. Douglas, Jr., “On the numerical integration of \(\frac{\partial^2u}{\partial{x^2}} +\frac{\partial^2u}{\partial{y^2}}=\frac{\partial{u}}{\partial{t}}\) by implicit methods,” J. Soc. Indust. Appl. Math., Vol. 3, pp. 42–65, 1955.
 Douglas, J. (1961) On incomplete iteration for implicit parabolic difference equations. J. Soc. Indust. Appl. Math. 9: pp. 433439 CrossRef
 Douglas, J., Dupont, T., Ewing, R. (1979) Incomplete iteration for timestepping a Galerkin method for a quasilinear parabolic problem. SIAM J. Numer. Anal. 16: pp. 503522 CrossRef
 Douglas, J., Gunn, J. (1964) A general formulation of alternating direction methods Part I., Parabolic hyperbolic problems. Numer. Math. 6: pp. 428453 CrossRef
 Douglas, J., Kim, S. (2001) Improved accuracy for locally onedimensional methods for parabolic equations. Mathematical Models and Methods in Applied Sciences 11: pp. 15631579 CrossRef
 Douglas, J., Peaceman, D. (1955) Numerical solution of twodimensional heat flow problems. American Institute of Chemical Engineering Journal 1: pp. 505512
 Grevera, G., Udupa, J. (1998) An objective comparision of 3D image interpolation methods. IEEE Trans. Medical Imaging 17: pp. 642652 CrossRef
 Grevera, G., Udupa, J. (1999) A tackspecific evaluation of threedimensional image interpolation techniques. IEEE Trans. Medical Imaging 18: pp. 137143 CrossRef
 F. Guichard and F. Malgouyres, “Total variation based interpolation,” in Proceedings of the Ninth European Signal Processing Conference, Patran, Greece, 1998, pp. 1741–1744.
 Jensen, K., Anastassiou, D. (1995) Subpixel edge localization and the interpolation of still images. IEEE Trans. Image Process 4: pp. 285295 CrossRef
 S. Kim, “PDEbased image restoration: A hybrid model and color image denoising,” (accepted to IEEE Trans. Image Processing).
 Lee, C., Eden, M., Unser, M. (1998) Highquality image resizing using oblique projection operators. IEEE Trans. Image Process 7: pp. 679692 CrossRef
 Lehmann, T., Gönner, C., Spitzer, K. (1999) Survey: Interpolation methods in medical image processing. IEEE Trans. Medical Imaging 8: pp. 10491075 CrossRef
 Li, X., Orchard, M. (2001) New edgedirected interpolation. IEEE Trans. Image Process 10: pp. 15211527 CrossRef
 Malgouyres, F., Guichard, F. (2001) Edge direction preserving image zooming: A mathematical and numerical analysis. SIAM J. Numer. Anal. 39: pp. 137 CrossRef
 Marquina, A., Osher, S. (2000) Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal. SIAM J. Sci. Comput. 22: pp. 387405 CrossRef
 K. Morton and D. Mayers, Numerical Solution of Partial Differential Equations, 2nd Ed.,” Cambridge University Press, New York, 2005.
 Panci, G., Campisi, P., Colonnese, S., Scarano, G. (2003) Multichannel blind image deconvolution using the Bussgang algorithm: Spatial and multiresolution approaches. IEEE Trans. Image Process. 12: pp. 13241337 CrossRef
 Peaceman, D., Rachford, H. (1955) The numerical solution of parabolic and elliptic differential equations. J. Soc. Indust. Appl. Math 3: pp. 2841 CrossRef
 Penney, G., Schnabel, J., Rueckert, D., Viergever, M., Niessen, W. (2004) Registrationbased interpolation. IEEE Trans. Medical Imaging 23: pp. 922926 CrossRef
 M. Razaz and R. Lee, “Comparison of iterative deconvolution and wiener filtering for image restoration, in image processing: Mathematical Methods and Applications,” Vol. 61 of Inst. Math. Appl. Conf. Ser., Oxford Univ. Press, Oxford, 1997, pp. 145–159.
 Russell, T. (1885) Time stepping along characteristics with incomplete iteration for a galerkin approximation of miscible displacement in porous media. SIAM J. Numer. Anal. 22: pp. 9701013 CrossRef
 Sapiro, G., Ringach, D. (1996) Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans. Image Processing 5: pp. 15821586 CrossRef
 Sochen, N., Kimmel, R., Malladi, R. (1998) A general framework for low level vision. IEEE Trans. Image Processing 7: pp. 310318 CrossRef
 Title
 EdgeForming Methods for Image Zooming
 Journal

Journal of Mathematical Imaging and Vision
Volume 25, Issue 3 , pp 353364
 Cover Date
 20061001
 DOI
 10.1007/s1085100672502
 Print ISSN
 09249907
 Online ISSN
 15737683
 Publisher
 Kluwer Academic Publishers
 Additional Links
 Topics
 Keywords

 image zooming
 interpolation
 checkerboard effect
 edgeforming
 Industry Sectors
 Authors

 Youngjoon Cha ^{(1)}
 Seongjai Kim ^{(2)}
 Author Affiliations

 1. Department of Applied Mathematics, Sejong University, 98 KunjaDong, Seoul, 143747, South Korea
 2. Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 397625921, USA