1.

L. Ambrosio and S. Masnou, “A direct variational approach to a problem arising in image recostruction,”

*Interfaces and Free Boundaries*, Vol. 5, No. 1, pp. 63–81, 2003.

MathSciNetMATHGoogle Scholar2.

G. Barles and C. Georgelin, “A simple proof for the convergence for an approximation scheme for computing motions by mean curvature,”

*SIAM J. Numerical Analysis*, Vol. 32, pp. 484–500, 1995.

CrossRefMathSciNetMATHGoogle Scholar3.

O. Bar, H. Sompolinsky, and R. Ben-Yishai, “ Theory of orientation tuning in visual cortex”

*Proc. Natl. Acad. Sci. U.S.A*., Vol. 92, pp. 3844–3848, 1995.

Google Scholar4.

A. Bellaiche, “The tangent space in sub-Riemannian geometry” in Proceedings of the satellite Meeting of the 1st European, Congress of Mathematics ‘Journees nonholonomes: Geometrie sous-riemannienne, theorie du controle, robotique,’ Paris, France, June 30–July 1, 1992. Basel: Birkhäuser. *Prog. Math*., Vol. 144, pp. 1–78, 1996.

5.

G. Bellettini and R. March, “An image segmentation variational model with free discontinuities and contour curvature,”

*Math. Mod. Meth. Appl. Sci*., Vol. 14, pp. 1–45, 2004.

CrossRefMathSciNetMATHGoogle Scholar6.

C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera, “Filling-in by interpolation of vector fields and gray levels,”

*IEEE Transactions on Image Processing*, Vol. 10, No. 8, pp. 1200–1211, 2001.

CrossRefMathSciNetMATHGoogle Scholar7.

J. Bence, B. Merriman, and S. Osher, “Diffusion generated motion by mena curvature,” in *Computational Crystal Growers Workshop*, J. Taylor Sel. Taylor (Ed).

8.

A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, “Fundamental solutions for non-divergence form operators on stratified groups,”

*Trans. Amer. Math. Soc*., Vol. 356, No. 7, pp. 2709–2737, 2004.

CrossRefMathSciNetMATHGoogle Scholar9.

L. Capogna, D. Danielli, and N. Garofalo, “The geometric Sobolev embedding for vector fields and the isoperimetric inequality”

*Comm Anal. Geo*., Vol. 12, pp. 203–215, 1994.

MathSciNetGoogle Scholar10.

M. Carandini and D.L. Ringach, “Predictions of a recurrent model of orientation selectivity,”

*Vision Res*., Vol. 37, pp. 3061–3071, 1997.

CrossRefGoogle Scholar11.

G. Citti, M. Manfredini, and A. Sarti, “Neuronal oscillations in the visual cortex: Γ-convergence to the Riemannian Mumford-Shah functional”

*SIAM Journal of Mathematical Analysis*, Vol. 35, No. 6, pp. 1394–1419, 2004.

CrossRefMathSciNetMATHGoogle Scholar12.

J.G. Daugman, “Uncertainty—relation for resolution in space spatial frequency and orientation optimized by two dimensional visual cortical filters,”

*J. Opt. Soc. Amer*., Vol. 2, No. 7, pp. 1160–1169, 1985.

Google Scholar13.

E. De Giorgi, “Some remarks on Γ convergence and least square methods,” in *Composite Media and Homogeniziation Theory* G. Dal Masoand and G. F. Dell’Antonio (Eds.), Birkhauser Boston, 1991, pp. 153–142.

14.

S. Esedoglu and R. March, “Segmentation with Deph but without detecting junctions,”

*Journal of Mathematical Imaging and Vision*, Vol. 18, pp. 7–15, 2003.

CrossRefMathSciNetMATHGoogle Scholar15.

A.K. Engel, P. Konig, C.M. Gray, and W. Singer, “Stimulus dependent neuronal oscillations, in cat visual cortex: Intercolumnar interaction as determined by cross-correlation analysis”

*European Journal of Neuroscience*, Vol. 2, pp. 558–606, 1990.

CrossRefGoogle Scholar16.

A.K. Engel, A.K. Kreiter, P. Konig, and W. Singer, “Syncronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat,” *PNAS*, Vol. 88, pp. 6048–6052, 1991.

17.

L. Evans, “Convergence of an Algorithm for mean curvature motion,”

*Indiana Univ. Math. J*., Vol. 42, No. 2, pp. 553–557, 1993.

CrossRefGoogle Scholar18.

B. Franchi, R. Serapioni, and F. Serra Cassano, “On the structure of finite perimeter sets in step 2 Carnot groups,”

*J. Geom. Anal*., Vol. 13, No. 3, pp. 421–466, 2003.

MathSciNetMATHGoogle Scholar19.

G.B. Folland, “Subelliptic estimates and function spaces on nilpotent Lie groups,”

*Ark. Mat*., Vol. 13, pp. 161–207, 1975.

CrossRefMATHMathSciNetGoogle Scholar20.

G.B. Folland, “On the Rothschild-Stein lifting theorem,”

*Commun. Partial Differ. Equations* Vol. 2, pp. 165–191, 1977.

MATHMathSciNetGoogle Scholar21.

G.B. Folland and E.M. Stein, “Estimates for the

\(\bar\partial_b\) complex and analysis on the Heisenberg group,”

*Comm. Pure Appl. Math*., Vol. 20, pp. 429–522, 1974.

MathSciNetGoogle Scholar22.

R. Goodman, “Lifting vector fields to nilpotent Lie groups,”

*J. Math. Pures Appl*., Vol. 57, pp. 77–85, 1978.

MATHMathSciNetGoogle Scholar23.

C.D. Gilbert, A. Das, M. Ito, M. Kapadia, and G. Westheimer, “Spatial integration and cortical dynamics,” *Proceedings of the National Academy of Sciences USA*, Vol. 93, pp. 615–622.

24.

C.M. Gray, P. Konig, A.K. Engel, and W. Singer, “Oscillatory responses in cat visual cortex exhibit inter-columnar syncronization which reflects global stimulus properties,”

*Nature*, Vol. 338, pp. 334–337, 1989.

CrossRefGoogle Scholar25.

S. Grossberg and E. Mingolla, “Neural dynamics of perceptual grouping: Textures, boundaries and emergent segmentations,” in *Perception and Psychophysics*, 1985.

26.

Field, A. Heyes, and R.F. Hess, “Contour integration by the human visual system: Evidence for a local Association Field,”

*Vision Research*, Vol. 33, pp. 173–193, 1993.

CrossRefGoogle Scholar27.

W.C. Hoffman, “The visual cortex is a contact bundle,”

*Applied Mathematics and Computation*, Vol 32, pp. 137–167, 1989.

CrossRefMATHMathSciNetGoogle Scholar28.

W.C. Hoffman and M. Ferraro, “Lie transformation groups, integral transforms, and invariant pattern recognition,”

*Spatial Vision*, Vol. 8, pp. 33–44, 1994.

Google Scholar29.

H. Hörmander, “Hypoelliptic second-order differential equations,”

*Acta Math*., Vol. 119, pp. 147–171, 1967.

MATHMathSciNetGoogle Scholar30.

H. Hörmander and A. Melin, “Free systems of vector fields,”

*Ark. Mat*, Vol. 16, pp. 83–88, 1978.

CrossRefMathSciNetMATHGoogle Scholar31.

D. Hubel and T. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,”

*Journal of Physiology*, Vol. 160, pp. 106–154, 1962.

Google Scholar32.

D. Jerison and A. Sánchez-Calle, “Subelliptic, second order differential operators,” Complex analysis III, Proc. Spec. Year, College Park/Md. 1985–86, Lect. Notes Math. 1277, pp. 46–77, 1987.

33.

J.P. Jones and L.A. Palmer “An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex,”

*J. Neurophysiology*, Vol. 58, pp. 1233–1258, 1987.

Google Scholar34.

G. Kanizsa, Grammatica del vedere, Il Mulino, Bologna, 1980.

Google Scholar35.

G. Kanizsa, *Organization in Vision*, Hardcover, 1979.

36.

M.K. Kapadia, M. Ito, C.D. Gilbert, and G. Westheimer, “Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys,”

*Neuron*, Vol. 15, pp. 843–856, 1995.

CrossRefGoogle Scholar37.

S. Kusuoka and D. Stroock, “Applications of the Malliavin calculus III,”

*J. Fac. Sci. Univ. Tokio, Sect. IA, Math*, Vol. 34, pp. 391–442, 1987.

Google Scholar38.

S. Kusuoka and D. Stroock, “Long time estimates for the heat kernel associated with a uniformly subelliptic symmetric second order operator,”

*Ann. of Math*., Vol. 127, pp. 165–189, 1988.

CrossRefMathSciNetGoogle Scholar39.

I. Kovacs and B. Julesz, “A closed curve is much more than an incomplete one: effect of closure in figure-ground segmentation,”

*PNAS*, 90, pp. 7495–7497, 1993.

Google Scholar40.

I. Kovacs and B. Julesz, “Perceptual sensitivity maps within globally defined visual shapes,”

*Nature*, Vol. 370, pp. 644–646, 1994.

CrossRefGoogle Scholar41.

LeVeque and J. Randall, Nonlinear conservation laws and finite volume methods. (English) Steiner, Oskar et al., Computational methods for astrophysical fluid flow. Saas-Fee advanced course 27. Lecture notes 1997. Swiss Society for Astrophysics and Astronomy. Berlin: Springer, pp. 1–159, 1998.

Google Scholar42.

S. Marcelja, “Mathematical description of the response of simple cortical cells,”

*J. Opt. Soc. Amer*., Vol. 70, pp. 1297–1300, 1980.

MathSciNetCrossRefGoogle Scholar43.

V. Magnani, “Differentiability and area formula on stratified Lie groups,”

*Houston J. Math*., Vol. 27, No. 2, pp. 297–323, 2001.

MATHMathSciNetGoogle Scholar44.

D. Mumford, M. Nitzberg, and T. Shiota,

*Filtering, Segmentation and Deph*, Springer-Verlag: Berlin, 1993.

Google Scholar45.

S. Masnou and J.M. Norel, “Level lines based disocclusion,” *Proc. 5th. IEEE International Conference on Image Processing*, Chicago, Illinois, October 4–7, 1998.

46.

K.D. Miller, A. Kayser, and N.J. Priebe, “Contrast-dependent nonlinearities arise locally in a model of contrast-invariant orientation tuning,”

*J. Neurophysiol*., Vol. 85, pp. 2130–2149, 2001.

Google Scholar47.

E. Mingolla, “Le unità della visione,” IX Kanitza lecture, Trieste symposium on perception and cognition, 26 October 2001.

48.

A. Nagel, E.M. Stein, and S. Wainger, “Balls and metrics defined by vector fields I: Basic properties,”

*Acta Math*., Vol. 155, pp. 103–147, 1985.

MathSciNetMATHGoogle Scholar49.

S.B. Nelson, M. Sur, and D.C. Somers, “An emergent model of orientation selectivity in cat visual cortical simples cells,”

*J. Neurosci*., Vol. 15, pp. 5448–5465, 1995.

Google Scholar50.

S.D. Pauls, “A notion of rectifiability modeled on Carnot groups,”

*Indiana Univ. Math. J*., Vol. 53, No. 1, pp. 49–81, 2004.

CrossRefMATHMathSciNetGoogle Scholar51.

S.D. Pauls, “Minimal surfaces in the Heisenberg group,”

*Geom. Dedicata*, Vol. 104, pp. 201–231, 2004.

CrossRefMATHMathSciNetGoogle Scholar52.

P. Perona, “Deformable kernels for early vision,”

*IEEE-PAMI*, Vol. 17, No. 5, pp. 488–499, 1995.

Google Scholar53.

J. Petitot, “Phenomenology of Perception, Qualitative Physics and Sheaf Mereology,”

*Proceedings of the 16th International Wittgenstein Symposium*, Vienna, Verlag Hölder-Pichler-Tempsky, 1994, pp. 387–408.

Google Scholar54.

J. Petitot and Y. Tondut, “Vers une Neuro-geometrie. Fibrations corticales, structures de contact et contours subjectifs modaux, Mathématiques, Informatique et Sciences Humaines,” EHESS, Paris, Vol. 145, pp. 5–101, 1998.

Google Scholar55.

J. Petitot, Morphological Eidetics for Phenomenology of Perception, in

*Naturalizing Phenomenology: Issues in Contemporary Phenomenology and Cognitive Science*, J. Petitot, F.J. Varela, J.-M. Roy, B. Pachoud (Eds.), Stanford, Stanford University Press, 1998, pp. 330–371.

Google Scholar56.

N.J. Priebe, K.D. Miller, T.W. Troyer, and A.E. Krukowsky, “Contrast-invariant orientation tuning in cat visual cortex: Thalamocortical input tuning and correlation-based intracortical connectivity.”

*J. Neurosci*., Vol. 18, pp. 5908–5927, 1998.

Google Scholar57.

L. Rothschild and E.M. Stein, “Hypoelliptic differential operators and nihilpotent Lie groups,”

*Acta Math*., Vol. 137, pp. 247–320, 1977.

MathSciNetMATHGoogle Scholar58.

A. Sarti, R. Malladi and J.A. Sethian, Subjective surfaces: A method for completion of missing boundaries, in

*Proceedings of the National Academy of Sciences of the United States of America*, Vol. 12, No.97, pp. 6258–6263, 2000.

CrossRefMathSciNetGoogle Scholar59.

A. Sarti, G. Citti, and M. Manfredini, “From neural oscillations to variational problems in the visual cortex,”

*Journal of Physiology*, Vol. 97, No. 2–3, pp. 87–385, 2003.

Google Scholar60.

M. Shelley, D.J. Wielaard, D. McLaughlin and R. Shapley, “A neuronal network model of macaque primary visual cortex (v1): Orientation selectivity and dynamics in the input layer 4calpha”.

*Proc. Natl. Acad. Sci. U.S.A*., Vol. 97, pp. 8087–8092, 2000.

CrossRefGoogle Scholar61.

S.C. Yen and L.H. Finkel, “Extraction of perceptually salient contours by striate cortical networks,”

*Vision Res*., Vol. 38, No. 5, pp. 719–741, 1998.

CrossRefGoogle Scholar62.

Y.Q. Song and X.P. Yang, “BV function in the Heisenberg group,”

*Chinese Ann. Math. Ser*. A, Vol. 24, No. 5, pp. 541–554, 2003; translation in

*Chinese J. Contemp. Math*., Vol. 24, No. 4, pp. 301–316, 2004.

MathSciNetMATHGoogle Scholar63.

E.M. Stein, *Harmonic Analysis*, Princeton University Press, 1993.

64.

S.K. Vodop’yanov and A.D. Ukhlov, “Approximately differentiable transformations and change of variables on nilpotent groups,”

*Sib. Math. J*., Vol. 37, No.1, pp. 62–78, 1996, translation from

*Sib. Mat. Zh*., Vol. 37, No. 1, pp. 70–89, 1996.

CrossRefMathSciNetMATHGoogle Scholar65.

V.S. Varadarajan, “Lie groups, Lie algebras, and their representations,”

*Graduate Texts in Mathematics*. 102, New York, Springer, 1984.

MATHGoogle Scholar66.

N.T. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and geometry on groups Cambridge texts in Mathematics, 100, Cambridge University Press, Cambredge, 1992.

Google Scholar67.

F.W. Warner, Foundations of differentiable manifolds and Lie groups. Glenview, Illinois-London: Scott, Foresman & Comp. 270, 1971.

MATHGoogle Scholar68.

C. Wang, “The comparsion principle for viscosity solutions of fully nonlinear subelliptic equations in Carnot groups,” Preprint.

69.

F. Worgotter and C. Koch, “A detailed model of the primary visual pathway in the cat: Comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity,”

*J. Neurosci*., Vol. 11, pp. 1959–1979, 1991.

Google Scholar