1.

J. Hudson, *Piecewise Linear Topology*, W.A. Benjamin inc. 1969.

2.

J. Alexander, “The combinatorial theory of complexes,”

*Ann. Math.*, Vol. 31, pp. 294–322, 1930.

Google Scholar3.

W. Lickorish, “Simplicial moves on complexes and manifolds,” *Geometry and Topology Monograph, Proccedings of the KirbyFest*, Vol. 2, pp. 229–320, 1998.

4.

E. Moise, “Affine structures on 3-manifolds,”

*Annals of mathematics*, Vol. 56, pp. 96–114, 1952.

Google Scholar5.

T.Y. Kong and A. Rosenfeld, “Digital topology: Introduction and survey,”

*Computer Vision, Graphics and Image Processing*, Vol. 48, pp. 357–393, 1989.

Google Scholar6.

D. Morgenthaler and A. Rosenfeld, “Surfaces in three-dimensional images,”

*Information and Control*, Vol. 51, pp. 227–247, 1981.

CrossRefGoogle Scholar7.

R. Malgouyres, “A definition of surfaces of ℤ^{3},” in *Discrete Geometry for Computer Imagery*, pp. 23–34, 1993.

8.

M. Couprie and G. Bertrand, “Simplicity surfaces : A new definition of surfaces in ℤ

^{3},”

*SPIE Vision Geometry V Proceedings*, Vol. 3454, pp. 40–51, 1998.

Google Scholar9.

R. Ayala, E. Dominguez, A. Frances, A. Quintero, and J. Rubio, “On surfaces in digital topolgy,” *Discrete Geometry for Computer Imagery*, pp. 271–276, 1995.

10.

G. Bertrand and M. Couprie, “A model for digital topology,” in Springer (Ed.), *Discrete Geometry for Computer Imagery*, Vol. 1568, of LNCS, pp. 229–241, 1999.

11.

E. Khalimsky, “On topologies of generalized segments,”

*Soviet Mat. Doklady*, Vol. 10, pp. 1508–1511, 1969.

Google Scholar12.

G. Bertrand, “New notions for discrete topology,” in Springer (Ed.), *Discrete Geometry for Computer Imagery*, Vol. 1568 of LNCS, pp. 218–228, 1999.

13.

P. Alexandroff, *Combinatorial Topology*, Dover Publications, 1947.

14.

A.V. Evako, R. Kopperman, and Y.V. Mukhin, “Dimensional properties of graphs and digital spaces,”

*Jour. of Math. Imaging and Vision*, Vol. 6, pp. 109–119, 1996.

CrossRefGoogle Scholar15.

A.V. Ivashchenko, “Representation of smooth surfaces by graphs,”

*Transformations of Graphs which do not Change the Euler Characteristic of Graphs*, Discrete Mathematics, Vol. 122, pp. 219–133, 1993.

Google Scholar16.

A.V. Ivashchenko, “Dimension on discrete spaces,” *International Journal of Theoretical Physics*, 1994.

17.

E.D. Khalimsky and R. Kopperman P. M., “Computer graphics and connected topologies on finite ordered sets,”

*Topology Appl.* Vol. 36, pp. 1–17, 1990.

CrossRefGoogle Scholar18.

R. Kopperman, P.R. Meyer, and R.W., “A Jordan surface theorem for three-dimensional digital spaces,” *Discrete Computational Geometry*, Vol. 6, pp. 155–161, 1991.

19.

G. Herman, “Discrete multidimensional Jordan surfaces,”

*Graphicals Models and Image Processing*, Vol. 54, pp. 507–515, 1992.

CrossRefGoogle Scholar20.

G. Herman, “Oriented surfaces in digital spaces,”

*Graphicals Models and Image Processing*, Vol. 55, pp. 381–396, 1993.

Google Scholar21.

J. Udupa, “Multidimensional digital boundaries,”

*Graphicals Models and Image Processing*, Vol. 56, pp. 311–323, 1994.

Google Scholar22.

R. Aharoni, G.T. Herman, and M.L., “Jordan graphs,” *Graphicals Models and Image Processing*, Vol. 58, pp. 345–359, 1996.

23.

J. Burguet, R.M., “Strong thinning and polyhedric approximation of the surface of a voxel object,” *Discrete Applied Mathematics*, Vol. 125, pp. 93–114, 2003.

24.

W. Lorensen and H. Cline, “Marching cubes: A high resolution 3D surface construction algorithm,”

*Computer Graphics*, Vol. 21, pp. 163–169, 1987.

Google Scholar25.

J.O. Lachaud and A. Montanvert, “Continuous analogs of digital boundaries: A topological approach to iso-surfaces,”

*Graphical models*, Vol. 62, pp. 129–164, 2000.

CrossRefGoogle Scholar26.

X. Daragon, M. Couprie, and G. Bertrand, Marching chains algorithm for Alexandroff-Khalimsky spaces. In: *SPIE Vision Geometry XI proceedings*, pp. 51–62, 2002.

27.

X. Daragon, M. Couprie, and G. Bertrand, “Discrete frontiers,” in Springer (Ed.) *Discrete Geometry for Computer Imagery*, Vol. 2886 of LNCS, pp. 236–245, 2003.

28.

V. Kovalevsky, “Finite topology as applied to image analysis,” *Computer Vision, Graphics and Image Processing*, 1989.

29.

Y. Cointepas, I. Bloch, and L. Garnero, “A cellular model for multi-objects multi-dimensional homotopic deformations,”

*Pattern Recognition*, Vol. 34, No. 9, pp. 1785–1798, 2001.

CrossRefGoogle Scholar30.

C. Lohou and G. Bertrand, “Poset approach to 3d parallel thinning,” in

*SPIE Vision Geometry VIII*, Vol 3811, pp. 45–56, 1999.

Google Scholar31.

X. Daragon and M. Couprie, “Segmentation topologique du neo-cortex cérébral depuis des données IRM,” in: RFIA 2002, Vol. 3, pp. 809–818, 2002.

Google Scholar32.

J. Pescatore, Maillages homotopiques tétraédriques des tissus de la tête pour le calcul du problème direct en électro/magnéto-encéphalographie. Ph.D. Thesis, ENST Paris, 2001.

33.

J. Burguet and I. Bloch, “Homotopic labeling of elements in a tetrahedral mesh for the head modeling,” in *Procs. 9th Iberoamerican Congress on Pattern Recognition*, CIARP 2004, pp. 566–573, 2004.

34.

M. Couprie, G. Bertrand, and Y. Kenmochi, “Discretization in 2d and 3d orders,”

*Graphical Models*, Vol. 65, pp. 77–91, 2003.

CrossRefGoogle Scholar35.

X. Daragon, M. Couprie, and G. Bertrand, “Derived neighborhoods and frontier orders,”

*Discrete Applied Mathematics, Special issue on DGCI*, Vol. 147, No. 2–3, pp. 227–243, 2005.

Google Scholar