Adler M., Immerman N. (2003) An

*n*! lower bound on formula size. ACM Transactions on Computational Logic 4(3): 296–314

CrossRefAreces, C., Blackburn, P., & Marx, M. (1999). A road-map on complexity for hybrid logics. In *Proceedings of the 13th international workshop on computer science logic (CSL ’99), LNCS* (Vol. 1683, pp. 307–321). Springer.

Areces C., Blackburn P., Marx M. (2001) Hybrid logics: Characterization, interpolation and complexity. Journal of Symbolic Logic 66(3): 977–1010

CrossRefAreces, C., & ten Cate, B. (2007). Hybrid logics. In *Handbook of modal logic, studies in logic* (Vol. 3, pp. 821–868). New York: Elsevier.

Ben-Ari M., Pnueli A., Manna Z. (1983) The temporal logic of branching time. Acta Informatica 20: 207–226

CrossRefBozzelli, L. (2008). The complexity of CTL* + linear past. In *Proceedings of the 11th international conference on foundations of software science and computational structures (FOSSACS 2008), LNCS* (Vol. 4962, pp. 186–200). Springer.

Chlebus B.S. (1986) Domino-tiling games. Journal of Computer and System Sciences 32(3): 374–392

CrossRefClarke, E. M., & Emerson, E. A. (1981). Design and synthesis of synchronization skeletons using branching- time temporal logic. In *Proceedings logic of programs, LNCS* (Vol. 131, pp. 52–71). Springer.

Clarke E.M., Grumberg O., Peled D.A. (1999) Model checking. MIT Press, Cambridge

Demri, S., & Lazić, R. (2006). LTL with the freeze quantifier and register automata. In *Proceedings of the 21th IEEE symposium on logic in computer science (LICS 2006)* (pp. 17–26). IEEE.

Emerson E.A., Halpern J.Y. (1986) “Sometimes” and “not never” revisited: On branching versus linear time temporal logic. Journal of the ACM 33(1): 151–178

CrossRefEmerson, E. A., & Jutla, C. S. (1991). Tree automata, mu-calculus and determinacy. In *Proceedings of the 32nd IEEE annual symposium on foundations of computer science (FOCS ’91)* (pp. 368–377). IEEE.

Franceschet M., de Rijke M. (2006) Model checking hybrid logics (with an application to semistructured data). Journal of Applied Logic 4(3): 279–304

CrossRefFranceschet, M., de Rijke, M., & Schlingloff, B. H. (2003). Hybrid logics on linear structures: Expressivity and complexity. In *Proceedings of the 10th international symposium on temporal representation and reasoning/4th international conference on temporal logic (TIME-ICTL 2003)* (pp. 192–202). IEEE.

Goranko, V. (1994). Temporal logic with reference pointers. In *Proceedings of the first international conference on temporal logic (ICTL ’94), LNCS* (Vol. 827, pp. 133–148). Springer.

Grumberg, O., & Veith, H. (Eds.). (2008). *25 Years of model checking—history, achievements, perspectives, LNCS* (Vol. 5000). Springer.

Hafer, T., & Thomas, W. (1987). Computation tree logic CTL* and path quantifiers in the monadic theory of the binary tree. In *Proceedings of the 14th international colloquium on automata, languages and programming (ICALP ’87), LNCS* (Vol. 267, pp. 269–279). Springer.

Jurdziński, M., & Lazić, R. (2007). Alternation-free mu-calculus for data trees. In *Proceedings of the 22th IEEE symposium on logic in computer science (LICS 2007)*, IEEE.

Kupferman, O., & Vardi, M. Y. (2006). Memoryful branching-time logic. In *Proceedings of the 21st IEEE symposium on logic in computer science (LICS 2006)* (pp. 265–274). IEEE.

Laroussinie, F., Markey, N., & Schnoebelen, P. (2002). Temporal logic with forgettable past. In *Proceedings of the 17th IEEE symposium on logic in computer science (LICS 2002)* (pp. 383–392). IEEE.

Laroussinie F., Schnoebelen P. (1995) A hierarchy of temporal logics with past. Theoretical Computer Science 148(2): 303–324

CrossRefLaroussinie F., Schnoebelen P. (2000) Specification in CTL + Past for verification in CTL. Logic in Computer Science 156(1-2): 236–263

Moller, F., & Rabinovich, A. M. (1999). On the expressive power of CTL*. In *Proceedings of the 14th annual IEEE symposium on logic in computer science (LICS ’99)* (pp. 360–369). IEEE.

Mundhenk, M., Schneider, T., Schwentick, T., & Weber, V. (2005). Complexity of hybrid logics over transitive frames. In *Proceedings of M4M-4, Humbold-Universität Berlin, Informatik-Berichte* (Vol. 194, pp. 62–78).

Rabin, M. (1970). Weakly definable relations and special automata. In *Proceedings of symposium mathematical logic and foundations of set theory, North Holland* (pp. 1–23).

Schwentick, T., & Weber, V. (2007). Bounded-variable fragments of hybrid logics. In *Proceedings of the 24th annual symposium on theoretical aspects of computer science (STACS 2007), LNCS* (Vol. 4393, pp. 561–572). Springer.

Stockmeyer, L. J. (1974). *The complexity of decision problems in automata theory and logic*. PhD thesis, MIT.

ten Cate, B., & Franceschet, M. (2005). On the complexity of hybrid logics with binders. In *Proceedings of the 19th international workshop on computer science logic (CSL 2005), LNCS* (Vol. 3634, pp. 339–354). Springer.

Thomas W. (1990) Automata on infinite objects. In: van Leeuwen J. (eds) Handbook of theoretical computer science, Vol. B: Formal models and sematics. Elsevier, MIT Press, pp 133–192

Vardi, M. Y. (1995). Alternating automata and program verification. In *Computer science today, LNCS* (Vol. 1000, pp. 471–485). Heidelberg: Springer.

Vardi, M. Y. (1998). Reasoning about the past with two-way automata. In *Proceedings of the 25th international colloquium on automata, languages and programming (ICALP ’98), LNCS* (Vol. 1443, pp. 628–641). Springer.

Vardi, M. Y. (2007). Automata-theoretic techniques for temporal reasoning. In *Handbook of modal logic, studies in logic* (Vol. 3, pp. 971–989). Elsevier.

Vardi, M. Y., & Stockmeyer, L. J. (1985). Improved upper and lower bounds for modal logics of programs: Preliminary report. In *Proceedings of the 17th annual ACM symposium on theory of computing (STOC ’85), ACM* (pp. 240–251).

Wilke, T. (1999). CTL^{+} is exponentially more succinct than CTL. In *Proceedings of the 19th conference on foundations of software technology and theoretical computer science (FSTTCS), LNCS* (Vol. 1738, pp. 110–121). Springer.

Zielonka W. (1998) Infinite games on finitely coloured graphs with applications to automata and infinite trees. Theoretical Computer Science 200: 135–183

CrossRef