, Volume 18, Issue 3, pp 357-402
Date: 07 Mar 2009

Strong Paraconsistency and the Basic Constructive Logic for an Even Weaker Sense of Consistency

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

In a standard sense, consistency and paraconsistency are understood as the absence of any contradiction and as the absence of the ECQ (‘E contradictione quodlibet’) rule, respectively. The concepts of weak consistency (in two different senses) as well as that of F-consistency have been defined by the authors. The aim of this paper is (a) to define alternative (to the standard one) concepts of paraconsistency in respect of the aforementioned notions of weak consistency and F-consistency; (b) to define the concept of strong paraconsistency; (c) to build up a series of strongly paraconsistent logics; (d) to define the basic constructive logic adequate to a rather weak sense of consistency. All logics treated in this paper are strongly paraconsistent. All of them are sound and complete in respect a modification of Routley and Meyer’s ternary relational semantics for relevant logics (no logic in this paper is relevant).