Skip to main content
Log in

Comparison and correlation of in vitro, in vivo and in silico evaluations of alpha, beta and gamma cyclodextrin complexes of curcumin

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In the present study investigated the effect of curcumin (CUR) alpha (α), beta (β) and gamma (γ) cyclodextrin (CD) complexes on its solubility and bioavailability. CUR the active principle of turmeric is a natural antioxidant agent with potent anti-inflammatory activity along with chemotherapeutic and chemopreventive properties. Poor solubility and poor oral bioavailability are the main reasons which preclude CUR use in therapy. Extent of complexation was β-CD complex (82 %) > γ-CD (71 %) > α-CD (65 %). Pulverization method resulted in significant enhancement of CUR (0.002 mg/ml) solubility with CUR α-CD complex (0.364 mg/ml) > CUR β-CD complex (0.186 mg/ml) > CUR γ-CD complex (0.068 mg/ml). Gibbs-free energy and in silico molecular docking studies favour formation of α-CD complex > β-CD complex > γ-CD complex. With reference to CUR, relative bioavailability of CUR α-CD, CUR β-CD and CUR γ-CD complexes were 460, 365 and 99 % respectively. CUR–CD complexes exhibited increased bioavailability with an increase in t½, tmax, Cmax, AUC, Ka, and MRT; and a decrease in Ke, clearance and Vd values. AUC increase was CUR α-CD complex > CUR β-CD complex > CUR γ-CD complex. Significant difference (p < 0.05) was observed between CUR α-CD complex and CUR γ-CD complex by one-way ANOVA and Dunnett’s post hoc test for multiple comparison analysis. Correlation observed between in vitro, in vivo and in silico methods indicates potential of in silico and in vitro methods in CD selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aggarwal, B.B., Sundaram, C., Malani, N., Ichikawa, H.: Curcumin: the Indian solid gold. Adv. Exp. Med. Biol. 595, 1–75 (2007)

    Article  Google Scholar 

  2. Huang, H.C., Jan, T.R., Yeh, S.F.: Inhibitory effect of curcumin, an anti-inflammatory agent, on vascular smooth muscle cell proliferation. Eur. J. Pharmacol. 221, 381–384 (1992)

    Article  CAS  Google Scholar 

  3. Lim, G.P., Chu, T., Yang, F., Beech, W., Frautschy, S.A., Cole, G.M.: The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci. 21, 8370–8377 (2001)

    CAS  Google Scholar 

  4. Natarajan, C., Bright, J.J.: Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signalling through Janus kinase-STAT pathway in T lymphocytes. J. Immunol. 168, 6506–6513 (2002)

    CAS  Google Scholar 

  5. Mazumder, A., Neamati, N., Sunder, S., Schulz, J., Pertz, H., Eich, E., Pommier, Y.: Curcumin analogs with altered potencies against HIV-1 integrase as probes for biochemical mechanisms of drug action. J. Med. Chem. 40, 3057–3063 (1997)

    Article  CAS  Google Scholar 

  6. Awasthi, S., Srivastava, S.K., Piper, J.T., Singhal, S.S., Chaubey, M., Awasthi, Y.C.: Curcumin protects against 4-hydroxy-2-trans-nonenal-induced cataract formation in rat lenses. Am. J. Clin. Nutr. 64, 761–766 (1996)

    CAS  Google Scholar 

  7. Ukil, A., Maity, S., Karmakar, S., Datta, N., Vedasiromoni, J.R., Das, P.K.: Curcumin, the major component of food flavor turmeric, reduces mucosal injury in trinitrobenzene sulphonic acid-induced colitis. Br. J. Pharmacol. 139, 209–218 (2005)

    Article  Google Scholar 

  8. Aggarwal, B.B., Kumar, A., Bharti, A.C.: Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 23, 363–398 (2003)

    CAS  Google Scholar 

  9. Mukhopadhyay, A., Bueso-Ramos, C., Chatterjee, D., Pantazis, P., Aggarwal, B.B.: Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene 20, 7597–7609 (2001)

    Article  CAS  Google Scholar 

  10. Shishodia, S., Potdar, P., Gairola, C.G., Aggarwal, B.B.: Curcumin (diferuloylmethane) down-regulates cigarette smoke-induced NF-kappaB activation through inhibition of IkappaBalpha kinase in human lung epithelial cells: correlation with suppression of COX-2, MMP-9 and cyclin D1. Carcinogenesis 24, 1269–1279 (2003)

    Article  CAS  Google Scholar 

  11. Mehta, K., Pantazis, P., McQueen, T., Aggarwal, B.B.: Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines. Anticancer Drugs 8, 470–481 (1997)

    Article  CAS  Google Scholar 

  12. Elattar, T.M., Virji, A.S.: The inhibitory effect of curcumin, genistein, quercetin and cisplatin on the growth of oral cancer cells in vitro. Anticancer Res. 20, 1733–1738 (2000)

    CAS  Google Scholar 

  13. Hanif, R., Qiao, L., Shiff, S.J., Rigas, B.: Curcumin, a natural plant phenolic food additive, inhibits cell proliferation and induces cell cycle changes in colon adenocarcinoma cell lines by a prostaglandin-independent pathway. J. Lab. Clin. Med. 130, 576–584 (1997)

    Article  CAS  Google Scholar 

  14. Aggarwal, B.B., Swaroop, P., Protiva, P., Raj, S.V., Shirin, H., Holt, P.R.: Cox-2 is needed but not sufficient for apoptosis induced by Cox- selective inhibitors in colon cancer cells. Apoptosis 8, 649–654 (2003)

    Article  Google Scholar 

  15. Thangapazham, R.L., Sharma, A., Maheshwari, R.K.: Multiple molecular targets in cancer chemoprevention by curcumin. AAPS J. 8, E443–E449 (2006)

    Article  CAS  Google Scholar 

  16. Joe, B., Vijaykumar, M., Lokesh, B.R.: Biological properties of curcumin-cellular and molecular mechanisms of action. Crit. Rev. Food Sci. Nutr. 44, 97–111 (2004)

    Article  CAS  Google Scholar 

  17. Yadav, V.R., Prasad, S., Kannappan, R., Ravindran, J., Chaturvedi, M.M., Vaahtera, L., Parkkinen, J., Aggarwal, B.B.: Cyclodextrin-complexed curcumin exhibits anti-inflammatory and antiproliferative activities superior to those of curcumin through higher cellular uptake. Biochem. Pharmacol. 80, 1021–1032 (2010)

    Article  CAS  Google Scholar 

  18. Tonnesen, H.H., Masson, M., Loftsson, T.: Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int. J. Pharm. 244, 127–135 (2002)

    Article  CAS  Google Scholar 

  19. Anand, P., Kunnumakkara, A.B., Newman, R.A., Aggarwal, B.B.: Bioavailability of curcumin: problems and promises. Mol. Pharm. 4, 807–818 (2007)

    Article  CAS  Google Scholar 

  20. Loftson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins: 1. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996)

    Article  Google Scholar 

  21. Del Valle, Martin: E.M.: cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004)

    Article  Google Scholar 

  22. Vivek, R.Y., Sarasija, S., Kshama, D., Seema, Y.: Effect of cyclodextrin complexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model. AAPS Pharm. Sci. Tech. 10, 752–762 (2009)

    Article  Google Scholar 

  23. Wieslawa, M., Magdalena, Z.: Investigation of inclusion complex of trazodone hydrochloride with hydroxypropyl-β-cyclodextrin. Carbohydr. Polym. 77, 482–488 (2009)

    Article  Google Scholar 

  24. Zoppetti, G., Puppini, N., Pizzutti, M., Fini, A., Giovani, T., Comini, S.: Water soluble progesterone–hydroxypropyl-b-cyclodextrin complex for injectable formulations. J. Incl. Phenom. Macrocycl. Chem. 57, 283–288 (2007)

    Article  CAS  Google Scholar 

  25. Swati, R., Sanjay, K.: Solubility enhancement of celecoxib using β-cyclodextrin inclusion complexes. Euro. J. Pharma. Biopharm. 57, 263–267 (2004)

    Article  Google Scholar 

  26. Higuchi, T., Connors, K.: Phase solubility techniques. In: Reilly, C. (ed.) Advances in Analytical Chemistry and Instrumentation, pp. 117–212. Wiley–Interscience, New York (1965)

  27. Ronald, L.H., Jason, L.M., Krystle, A.Y., Julie, A.I.H., Kevin, A.W.: Inclusion complexes of cationic xanthene dyes in cucurbit[7]uril. J. Incl. Phenom. Macrocycl. Chem. 66, 231–241 (2010)

    Article  Google Scholar 

  28. Christensen, M.B.V., Abouhachem, M., Svensson, B., Henriksen, A.: Crystal structure of an essential enzyme in seed starch degradation: barley limit dextrinase in complex with cyclodextrins. J. Mol. Bio. 405, 739–750 (2010)

    Article  Google Scholar 

  29. Tonozuka, T., Sogawa, A., Yamada, M., Matsumoto, N., Yoshida, H., Kamitori, S., Ichikawa, K., Mizuno, M., Nishikawa, A., Sakano, Y.: Structural basis for cyclodextrin recognition by Thermoactinomyces vulgaris cyclo/maltodextrin-binding protein. FEBS J. 274, 2109–2120 (2007)

    Article  CAS  Google Scholar 

  30. Gasteiger, J., Marsili, M.: Iterative partial equalization of orbital electro negativity a rapid access to atomic charges. Tetrahedron 36, 3219–3228 (1980)

    Article  CAS  Google Scholar 

  31. Monica, R., Amrita, B., Ishwar, K., Ghanshyam, M., Francesco, T.: In vitro and in vivo evaluation of b-cyclodextrin-based nanosponges of telmisartan. J. Incl. Phenom. Macrocycl, Chem (2012)

    Google Scholar 

  32. Powell, M.J.D.: Restart procedures for conjugate gradient method program. Math. Prog. 12, 241–254 (1977)

    Article  Google Scholar 

  33. SYBYL7.1, Tripos Associates INC: S. Henley Rd., St. Louis, MO631444, USA. (1699)

  34. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R.: Gaussian-03 suite of programs. Gaussian Inc, Pittsburgh (2003)

    Google Scholar 

  35. Emami, J.: In vitro-in vivo correlation: from theory to application. J. Pharm. Pharmaceut. Sci. 9, 169–189 (2006)

    CAS  Google Scholar 

  36. Patel, R.P., Patel, M.M.: Preparation and evaluation of inclusion complex of lipid lowering drug lovastatin with β-cyclodextrin. Dhaka Univ. J. Pharm. Sci. 6, 25–36 (2007)

    Article  Google Scholar 

  37. Baglole, K. N., Boland, P. G., Wagner, B. D.: Fluorescence enhancement of curcumin upon inclusion into parent and modi

  38. Mark, E.D., Marcus, E.B.: Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov. 3, 1023–1035 (2004)

    Article  Google Scholar 

  39. Krishna Mohan, P.R., Sreelakshmi, G., Muraleedharan, C.V., Joseph, R.: Water soluble complexes of curcumin with cyclodextrin: characterization by FT-Raman spectroscopy. Vib. Spectrosc. 62, 77–84 (2012)

    Article  Google Scholar 

  40. Gupta, N.K., Dixit, V.K.: Bioavailability enhancement of curcumin by complexation with phosphatidyl choline. J. Pharm. Sci. 100, 1987–1995 (2011)

    Article  CAS  Google Scholar 

  41. Kemp, D.C., Fan, P.W., Stevens, J.C.: Characterization of raloxifene glucuronidation in vitro: contribution of intestinal metabolism to pre-systemic clearance. Drug Metab. Dispos. 30, 694–700 (2002)

    Article  CAS  Google Scholar 

  42. Wempe, M.F., Wacher, V.J., Ruble, K.M., Ramsey, M.G., Edgar, K.J., Buchanan, N.L., Buchanan, C.M.: Pharmacokinetics of raloxifene in male Wistar-Hannover rats: influence of complexation with hydroxybutenyl-beta-cyclodextrin. Int. J. Pharm. 346, 25–37 (2008)

    Article  CAS  Google Scholar 

  43. Lu, Y., Kim, S., Park, K.: In vitro-in vivo correlation: perspectives on model development. Int. J. Pharm. 418, 142–148 (2011)

    Article  CAS  Google Scholar 

  44. Cardot, J.M., Beyssac, E., Alric, M.: In vitro–in vivo correlation: importance of dissolution in IVIVC. Disso. Tech. 15–16 (2007)

  45. Vinay, P., Raghu, G., Kusum, D., Roopa, S.P., Sarasija, S.: Preparation and characterization of Pioglitazone cyclodextrin inclusion complexes. J. Young. Pharma. 3, 267–274 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Prof. B.G. Shivananda, Principal, Al-Ameen College of Pharmacy for his kind support and encouragement to carry out this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarasija Suresh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patro, N.M., Sultana, A., Terao, K. et al. Comparison and correlation of in vitro, in vivo and in silico evaluations of alpha, beta and gamma cyclodextrin complexes of curcumin. J Incl Phenom Macrocycl Chem 78, 471–483 (2014). https://doi.org/10.1007/s10847-013-0322-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-013-0322-1

Keywords

Navigation