Skip to main content
Log in

Improving Finite State Impedance Control of Active-Transfemoral Prosthesis Using Dempster-Shafer Based State Transition Rules

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Finite state impedance (FSI) control is a widely used approach to control active-transfemoral prostheses (ATP). Current design of state transition rules depends on hard thresholding of intrinsic mechanical measurements, which cannot cope well with uncertainty related with intra- and inter-subject variations of these intrinsic recordings. In this study, we aimed to generate more robust FSI control of ATP against these variations by using Dempster-Shafer theory (DST)-based transition rules. The FSI control with DST-based rules was implemented on an instrumented ATP, evaluated on five able-bodied subjects and one patient with a unilateral transfemoral amputation. Then the DSP based transition rules were compared to the control with hard threshold (HT)-based transition rules. The results showed that when compared to the hard thresholding approach, the DST yielded enhanced accuracy in state transition timing and reduced control errors when intra- and inter-subject variations were presented. Additionally, the parameters of DST-based rules were uniform for all the subjects tested, allowing for easy and efficient transition rule design and calibration. The outcome of this study can lead to further improvement of robust, practical, and self-contained ATP design, which in turn will advance the motor function of patients with lower limb amputations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grimes, D., Flowers, W., Donath, M.: Feasibility of an active control scheme for above-knee prostheses. J. Biomech. Eng. 99, 215–221 (1977)

    Article  Google Scholar 

  2. Stein, J.L., Flowers, W.C.: Stance Phase-control of above-knee prostheses—knee control versus Sach foot design. J. Biomech. 20(1), 19–28 (1987)

    Article  Google Scholar 

  3. Au, S., Berniker, M., Herr, H.: Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw. 21(4), 654–666 (2008)

    Article  Google Scholar 

  4. Sup, F., Bohara, A., Goldfarb, M.: Design and control of a powered transfemoral prosthesis. Int. J. Robot. Res. 27(2), 263–273 (2008)

    Article  Google Scholar 

  5. Martinez-Villalpando, E.C., Herr, H.: Agonist-antagonist active knee prosthesis: a preliminary study in level-ground walking. J. Rehabil. Res. Dev. 46(3), 361–373 (2009)

    Article  Google Scholar 

  6. Sup, F., Varol, H.A., Mitchell, J., Withrow, T.J., Goldfarb, M.: Preliminary evaluations of a self-contained anthropomorphic transfemoral prosthesis. IEEE/ASME Trans. Mech. 14(6), 667–676 (2009)

    Article  Google Scholar 

  7. Highsmith, M.J., Kahle, J.T., Carey, S.L., Lura, D.J., Dubey, R.V., Quillen, W.S.: Kinetic differences using a power knee and C-Leg while sitting down and standing up: a case report. J. Prosthet. Orthot. 22(4), 237–243 (2010)

    Article  Google Scholar 

  8. Aaron, R.K., Herr, H.M., Ciombor, D.M., Hochberg, L.R., Donoghue, J.P., Briant, C.L., Morgan, J.R., Ehrlich, M.G.: Horizons in prosthesis development for the restoration of limb function. J. Am. Acad. Orthop. Surg. 14(10), 198–204 (2006)

    Google Scholar 

  9. Lambrecht, B.G.A., Kazerooni, H.: Design of a semiactive knee prosthesis. In: IEEE International Conference on Robotics and Automation, 2009. ICRA ’09, pp. 639–645, 12–17 May 2009

  10. Vallery, H., Burgkart, R., Hartmann, C., Mitternacht, J., Riener, R., Buss, M.: Complementary limb motion estimation for the control of active knee prostheses. Biomed. Tech. (Berl) 56(1), 45–51 (2011)

    Article  Google Scholar 

  11. Borjian, R., Lim, J., Khamesee, M.B., Melek, W.: The design of an intelligent mechanical active prosthetic knee. In: Industrial Electronics, 2008. IECON 2008. 34th Annual Conference of IEEE, pp. 3016–3021, 10–13 Nov 2008

  12. Donath, M.: Proportional EMG Control for Above-Knee Prosthesis. MIT Press, Cambridge (1974)

    Google Scholar 

  13. Zlatnik, D., Steiner, B., Schweitzer, G.: Finite-state control of a trans-femoral (TF) prosthesis. IEEE Trans. Control Syst. Technol. 10(3), 408–420 (2002)

    Article  Google Scholar 

  14. Soares, A.S.O.D., Yamaguti, E.Y., Mochizuki, L., Amadio, A.C., Serrao, J.C.: Biomechanical parameters of gait among transtibial amputees: a review. Sao Paulo Med. J. 127(5), 302–309 (2009)

    Article  Google Scholar 

  15. Sagawa, Y. Jr., Turcot, K., Armand, S., Thevenon, A., Vuillerme, N., Watelain, E.: Biomechanics and physiological parameters during gait in lower-limb amputees: a systematic review. Gait Posture 33(4), 511–526 (2011)

    Article  Google Scholar 

  16. Yeung, L.F., Leung, A.K., Zhang, M., Lee, W.C.: Long-distance walking effects on trans-tibial amputees compensatory gait patterns and implications on prosthetic designs and training. Gait Posture 35(2) (2011)

  17. Dundass, C., Yao, G.Z., Mechefske, C.K.: Initial biomechanical analysis and modeling of transfemoral amputee gait. J. Prosthet. Orthot. 15(1), 20–26 (2003)

    Article  Google Scholar 

  18. Jakeman, J., Eldred, M., Xiu, D.: Numerical approach for quantification of epistemic uncertainty. J. Comput. Phys. 229(12), 4648–4663 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  20. Hogan, N.: Impedance control: an approach to manipulation: Part II-implementation. J. Dyn. Syst. Meas. Control. 107, 8–16 (1985)

    Article  MATH  Google Scholar 

  21. Hogan, N.: Impedance control: an approach to manipulation: Part I - theory. J. Dyn. Syst. Meas. Control. 107, 1–7 (1985)

    Article  MATH  Google Scholar 

  22. Hogan, N.: Impedance control: an approach to manipulation: Part III - applications. J. Dyn. Syst. Meas. Control. 107, 17–24 (1985)

    Article  MATH  Google Scholar 

  23. Sup, F., Bohara, A., Goldfarb, M.: Design and control of a powered transfemoral prosthesis. Int. J. Robot. Res. 27(2), 263–273 (2008). doi:10.1177/0278364907084588

    Article  Google Scholar 

  24. Sup, F.C.: A Powered Self-Contianed Knee and Ankle Prosthesis for Near Normal Gait in Transfemoral Amputees. Vanderbilt University (2009)

  25. Perry, J., Burnfield, J.M.: Gait Analysis: Normal and Pathological Function, 2nd edn. SLACK, Thorofare (2010)

    Google Scholar 

  26. Bejek, Z., Paroczai, R., Illyes, A., Kiss, R.M.: The influence of walking speed on gait parameters in healthy people and in patients with osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 14(7), 612–622 (2006). doi:10.1007/s00167-005-0005-6

    Article  Google Scholar 

  27. Zeni, J.A., Jr., Richards, J.G., Higginson, J.S.: Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture 27(4), 710–714 (2008)

    Article  Google Scholar 

  28. Walley, P.: Towards a unified theory of imprecise probability. Int. J. Approx. Reason. 24(2–3), 125–148 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90(2), 111–127 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sentz, K., Ferson, S.: Combination of Evidence in Dempster-Shafer Theory. In: vol. SAND2002-0835. Sandia National Laboratories (2002)

  31. Basir, O., Yuan, X.: Engine fault diagnosis based on multi-sensor information fusion using Dempster–Shafer evidence theory. Inform. Fusion 8(4), 379–386 (2007)

    Article  Google Scholar 

  32. Chen, Q., Aickelin, U.: Anomaly detection using the Dempster-Shafer method. In: DMIN06, International Conference on Data Mining 2006, pp. 232–240, Las Vegas, Nevada, USA, 26–29 June 2006

  33. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 28, 325–339 (1967)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Zhang, F., Datseris, P. et al. Improving Finite State Impedance Control of Active-Transfemoral Prosthesis Using Dempster-Shafer Based State Transition Rules. J Intell Robot Syst 76, 461–474 (2014). https://doi.org/10.1007/s10846-013-9979-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9979-3

Keywords

Navigation