Skip to main content
Log in

Visual 3-D SLAM from UAVs

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

The aim of the paper is to present, test and discuss the implementation of Visual SLAM techniques to images taken from Unmanned Aerial Vehicles (UAVs) outdoors, in partially structured environments. Every issue of the whole process is discussed in order to obtain more accurate localization and mapping from UAVs flights. Firstly, the issues related to the visual features of objects in the scene, their distance to the UAV, and the related image acquisition system and their calibration are evaluated for improving the whole process. Other important, considered issues are related to the image processing techniques, such as interest point detection, the matching procedure and the scaling factor. The whole system has been tested using the COLIBRI mini UAV in partially structured environments. The results that have been obtained for localization, tested against the GPS information of the flights, show that Visual SLAM delivers reliable localization and mapping that makes it suitable for some outdoors applications when flying UAVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Se, S., Barfoot, T., Jasiobedzki, P.: Visual motion estimation and terrain modeling for planetary rovers. In: Proceedings of ISAIRAS (1995)

  2. Sim, R., Elinas, P., Griffin, M., Little, J.J.: Vision-based SLAM using the Rao-Blackwellised particle filter. In: IJCAI Workshop on Reasoning with Uncertainty in Robotics (RUR) (2005)

  3. Davison, A.J., Reid, I., Molton, N., Stasse, O.: MonoSLAM: real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)

    Article  Google Scholar 

  4. Munguia, R., Grau, A.: Monocular slam for visual odometry. In: IEEE International Symposium on Intelligent Signal Processing, 2007. WISP 2007, pp. 1–6. IEEE, Piscataway (2007)

    Chapter  Google Scholar 

  5. Kim, S., Oh, S.-Y.: Slam in indoor environments using omni-directional vertical and horizontal line features. J. Intell. Robot. Syst. 51(1), 31–43 (2008)

    Article  Google Scholar 

  6. Choi, Y.-H., Oh, S.-Y.: Grid-based visual slam in complex environments. J. Intell. Robot. Syst. 50(3), 241–255 (2007)

    Article  Google Scholar 

  7. Montiel, J.M.M., Civera, J., Davison, A.J.: Unified inverse depth parametrization for monocular slam. In: Robotics: Science and Systems (2006)

  8. Ho, K.L., Newman, P.: Detecting loop closure with scene sequences. Int. J. Comput. Vis. 74(3), 261–286 (2007)

    Article  Google Scholar 

  9. Lemaire, T., Berger, C., Jung, I., Lacroix, S.: Vision-based SLAM: stereo and monocular approaches. Int. J. Comput. Vis. 74(3), 343–364 (2007)

    Article  Google Scholar 

  10. Dailey, M., Parnichkun, M.: Simultaneous localization and mapping with stereo vision. In: Proceedings of the IEEE International Conference on Automation, Robotics, and Computer Vision (ICARCV) (2006)

  11. Klippenstein, J., Zhang, H.: Quantitative evaluation of feature extractors for visual slam. In: Fourth Canadian Conference on Computer and Robot Vision, 2007. CRV ’07., pp. 157–164 (2007)

  12. Lee, Y.-J., Song, J.-B.: Autonomous selection, registration, and recognition of objects for visual slam in indoor environments. In: Fourth Canadian Conference on Computer and Robot Vision, 2007. CRV ’07., pp. 668–673 (2007)

  13. Mikolajczyk, M., Smid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  14. Törnqvist, D., Conte, G., Kärlsson, R., Schon, T.B., Gustafsson, F.: Utilizing model structure for efficient simultaneous localization and mapping for a uav application. In: Proceeding of the IEEE Aerospace Conference (2008)

  15. Kim, J., Sukkarieh, S.: Real-time implementation of airborne inertial-slam. Robot. Auton. Syst. 55(1), 62–71 (2007)

    Article  Google Scholar 

  16. McLain, T.W., Beard, R.W., Barber, D.B., Redding, J.D., Taylor, C.N.: Vision-based target geo-location using a fixed-wing miniature air vehicle. J. Intell. Robot. Syst. 47(4), 361–382 (2006)

    Article  Google Scholar 

  17. Tsourdos, A., Aouf, N., Sazdovski, V., White, B.: Low altitude airbone slam with ins aided vision system. In: AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, South Carolina, AIAA (2007)

  18. Mejías, L., Mondragón, I., Correa, J.F., Campoy, P.: Colibri: vision-guided helicopter for surveillance and visual inspection. In: Video Proceedings of IEEE International Conference on Robotics and Automation, Rome, April 2007

  19. Mejias, L.: Control visual de un vehiculo aereo autonomo usando detección y seguimiento de características en espacios exteriores. Ph.D. thesis, Escuela Técnica Superior de Ingenieros Industriales. Universidad Politécnica de Madrid, Madrid, December 2006

  20. Mejias, L., Saripalli, S., Campoy, P., Sukhatme, G.: Visual servoing of an autonomous helicopter in urban areas using feature tracking. J. Field Robot. 23(3–4), 185–199 (2006)

    Article  Google Scholar 

  21. Mejias, L., Campoy, P., Mondragon, I., Doherty, P.: Stereo visual system for autonomous air vehicle navigation. In: 6th IFAC Symposium on Intelligent Autonomous Vehicles (IAV 07), Toulouse, September 2007

  22. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Proceedings of the Ninth European Conference on Computer Vision, May (2006)

  23. Lowe, D.G.: Distintive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  24. Fontanelli, D., Danesi, A., Bicchi, A.: Visual servoing on image maps. In: Springer Tracts in Advanced Robotics. Experimental Robotics, vol. 39. Springer, New York (2008)

    Google Scholar 

  25. Harris, C.G., Stephens, M.: A combined corner and edge detection. In: Proceedings of the 4th Alvey Vision Conference, pp. 147–151 (1988)

  26. Parra, I., Fernández, D., Naranjo, J.E., García-García, R., Sotelo, M.A., Gavilán, M.: 3d visual odometry for road vehicles. J. Intell. Robot. Syst. 51(1), 113–134 (2008)

    Article  Google Scholar 

  27. Mozos, O.M., Gil, A., Ballesta, M., Reinoso, O.: In: Lecture Notes in Computer Science, Current Topics in Artificial Intelligence, Chapter Interest Point Detectors for Visual SLAM, vol. 4788, pp. 170–179. Springer, Berlin (2008)

    Google Scholar 

  28. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  29. OpenCV: Open Source Computer Vision Library OpenCV. http://www.intel.com/research/mrl/research/opencv/ (2001)

  30. Wiklund, J., Caballero, F., Moe, A., De Dios, J.R.M., Forssen, P.-E., Nordberg, K., Ollero, A., Merino, L.: Vision-based multi-uav position estimation. In: Robotics And Automation Magazine, vol. 13, September 2006

  31. Carmi, A., Oshman, Y.: On the covariance singularity of quaternion estimators. In: AIAA Guidance, Navigation and Control Conference, Hilton Head, South Carolina (Paper No. AIAA-2007-6814), 20–23 August 2007

  32. Civera, J., Davison, A.J., Montiel, J.M.M.: Dimensionless monocular slam. In: IbPRIA, pp. 412–419 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iván F. Mondragón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artieda, J., Sebastian, J.M., Campoy, P. et al. Visual 3-D SLAM from UAVs. J Intell Robot Syst 55, 299–321 (2009). https://doi.org/10.1007/s10846-008-9304-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-008-9304-8

Keywords

Navigation