Journal of Intelligent Manufacturing

, Volume 21, Issue 5, pp 635–645

Simple, extensible and flexible random key predistribution schemes for wireless sensor networks using reusable key pools


    • Sabancı University
  • Sinan Emre Taşçı
    • Sabancı University
  • Young Jae Lee
    • Jeonju University
  • Yong Jae Lee
    • Tongmyong University
  • Ersoy Bayramoğlu
    • Sabancı University
    • EPFL
  • Murat Ergun
    • Sabancı University

DOI: 10.1007/s10845-009-0256-z

Cite this article as:
Levi, A., Taşçı, S.E., Lee, Y.J. et al. J Intell Manuf (2010) 21: 635. doi:10.1007/s10845-009-0256-z


Sensor nodes are tiny, low-power, computationally limited and battery constrained electromechanical devices. A sensor node contains a sensing unit and a wireless communication unit. Sensor nodes are deployed over a field for sensing an event data in the environment and transfer it towards a base station over its wireless channel. In a typical application, vast amount of sensor nodes are deployed over a field which constitute a sensor network. Sensor nodes must be customized for a specific sensor network application before the deployment. This customization is needed not only for underlying networking application, but also for security related configurations. Random key predistribution mechanisms have been proposed to provide security for wireless sensor networks. In the literature, there are well known random key predistribution schemes. Some of these schemes are secure, but quite complex to apply in real-world applications due to their node-based customization requirements, while some other are easily applicable but they do not offer reasonable security. In this paper, we propose random key predistribution schemes for wireless sensor networks that provide varying ranges of security. The proposed schemes are easily applicable in real world scenarios due to their simplicity and relaxed node customization requirements. In this respect, our schemes provide a tradeoff. Moreover, our proposed schemes show a good extensibility property. We assume prior deployment knowledge. We examine performance of our schemes and compare them with well known random key predistribution schemes.


SecuritySensor network securityKey distributionSensor node customizationResiliency

Copyright information

© Springer Science+Business Media, LLC 2009