Article

Journal of Intelligent Information Systems

, Volume 36, Issue 1, pp 99-115

First online:

Mining transposed motifs in music

  • Aída JiménezAffiliated withCentro de Investigación en Tecnologías de la Información y las Comunicaciones, University of Granada Email author 
  • , Miguel Molina-SolanaAffiliated withCentro de Investigación en Tecnologías de la Información y las Comunicaciones, University of Granada
  • , Fernando BerzalAffiliated withCentro de Investigación en Tecnologías de la Información y las Comunicaciones, University of Granada
  • , Waldo FajardoAffiliated withCentro de Investigación en Tecnologías de la Información y las Comunicaciones, University of Granada

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The discovery of frequent musical patterns (motifs) is a relevant problem in musicology. This paper introduces an unsupervised algorithm to address this problem in symbolically-represented musical melodies. Our algorithm is able to identify transposed patterns including exact matchings, i.e., null transpositions. We have tested our algorithm on a corpus of songs and the results suggest that our approach is promising, specially when dealing with songs that include non-exact repetitions.

Keywords

Musical mining Motifs Frequent pattern mining