Bartlett, P.(1996). The Sample Complexity of Pattern Classification with Neural Networks: The Size of the Weights is More Important Than the Size of the Network.

*Amer. Statistical Assoc. Math. Soc. Transactions*, 17, 277–364.

Google ScholarBarron, A.R. (1994). Approximation and Estimation Bounds for Artificial Neural Networks.

*Machine Learning*, 14, 115–133.

MATHGoogle ScholarBarron, A.R. (1994). Approximation and Estimation Bounds for Artificial Neural Networks.

*Machine Learning*, 14, 115–133.

MATHGoogle ScholarBenedek, G.M. and Itai, A. (1991a). Dominating Distributions and Learnability. In *Proc. Fifth Workshop on Computational Learning Theory, ACM* (pp. 253–264).

Benedek, G.M. and Itai, A. (1991a). Dominating Distributions and Learnability. In *Proc. Fifth Workshop on Computational Learning Theory, ACM* (pp. 253–264).

Benedek, G.M. and Itai, A. (1991b). Learnability with Respect to Fixed Distributions.

*Theoretical Computer Sys.*, 86(2), 377–390.

MathSciNetGoogle ScholarBenedek, G.M. and Itai, A. (1991b). Learnability with Respect to Fixed Distributions.

*Theoretical Computer Sys.*, 86(2), 377–390.

MathSciNetGoogle ScholarCampi, M.C. and Kumar P.R. (1996). Learning Dynamical Systems in a Stationary Environment.

*Proc. 31th IEEE Conf. Decision and Control*, 16(2), 2308–2311.

Google ScholarCampi, M.C. and Kumar P.R. (1996). Learning Dynamical Systems in a Stationary Environment.

*Proc. 31th IEEE Conf. Decision and Control*, 16(2), 2308–2311.

Google ScholarHoeffding, W. (1961). Probability Inequalities for Sum of Bounded Random Variables.

*Amer. Statistical Assoc. Math. Soc. Transactions*, 17, 277–364.

Google ScholarHoeffding, W. (1961). Probability Inequalities for Sum of Bounded Random Variables.

*Amer. Statistical Assoc. Math. Soc. Transactions*, 17, 277–364.

Google ScholarIosifesco, M. and Theodorescu, R. (1969). *Random Processes and Learning*. Springer-Verlog.

Iosifesco, M. and Theodorescu, R. (1969). *Random Processes and Learning*. Springer-Verlog.

Najarian, K. (2001a). On Learning of Sigmoid Neural Networks.

*Complexity*, 6(4), 39–45.

CrossRefMathSciNetGoogle ScholarNajarian, K. (2001a). On Learning of Sigmoid Neural Networks.

*Complexity*, 6(4), 39–45.

CrossRefMathSciNetGoogle ScholarNajarian, K. (2001b). On Learning and Computational Complexity of FIR Radial Basis Function Networks Part I: Learning. In *Proceedings of The 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'2001)*.

Najarian, K. (2001c). On Learning and Computational Complexity of FIR Radial Basis Function Networks Part II: Complexity Measures. In *Proceedings of The 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'2001)*.

Najarian, K. (2002a). On Stochastic Stability of Dynamic Neural Networks. *Discrete and Continuous Dynamical Systems*, Sup., 656–663.

Najarian, K. (2002b). Learning of FIR and ARX Neural Networks With Empirical Risk Minimization Algorithm. In *Proceedings of the 15th IFAC World Conference on Automatic Control (IFAC2002), Barcelona, Spain*.

Najarian, K. (2002c). Learning-Based Complexity Evaluation of Radial Basis Function Networks.

*Neural Processing Letters*, 16(2), 137–150.

CrossRefGoogle ScholarNajarian, K. (2002d).FIR Volterra Kernel Neural Models and PAC Learning.

*Complexity*, 7(6), 48–55.

CrossRefMathSciNetGoogle ScholarNajarian, K. (2002d).FIR Volterra Kernel Neural Models and PAC Learning.

*Complexity*, 7(6), 48–55.

CrossRefMathSciNetGoogle ScholarNajarian, K., Dumont, G.A., and Davies, M.S. (1999a). A Learning-Theory-Based Training Algorithm for Variable-Structure Dynamic Neural Modeling. In *Proc. Inter. Joint Conf. Neural Networks (IJCNN99)*.

Najarian, K., Dumont, G.A., and Davis, M.S. (2001a). Modeling of Neuromuscular Blockade System Using Neural Networks. In *Proc. of IEEE-EMBS'2001*.

Najarian, K., Dumont, G.A., and Davies, M.S. (2001b). PAC Learning in Nonlinear FIR Models.

*International Journal of Adaptive Control and Signal Processing*, 15(1), 37–52.

CrossRefGoogle ScholarNajarian, K., Dumont, G.A., and Davies, M.S. (2001b). PAC Learning in Nonlinear FIR Models.

*International Journal of Adaptive Control and Signal Processing*, 15(1), 37–52.

CrossRefGoogle ScholarNajarian, K., Dumont, G.A., Davies, M.S., and Heckman, N.E. (1999b) Learning of FIR Models Under Uniform Distribution. In *Proc. of The American Control Conference, San Dieo, U.S.A. (ACC1999)* (pp. 864–869).

Najarian, K., Dumont, G.A., Davies, M.S., and Heckman, N.E. (1999b) Learning of FIR Models Under Uniform Distribution. In *Proc. of The American Control Conference, San Dieo, U.S.A. (ACC1999)* (pp. 864–869).

Valiant, L.G. (1984). A Theory of Learnable. *Comm. ACM*, (pp. 1134–1142).

Valiant, L.G. (1984). A Theory of Learnable. *Comm. ACM*, (pp. 1134–1142).

Vapnik, V.N. (1996).

*Statistical Learning Theory*. New York: Wiley.

Google ScholarVidyasagar, M. (1997). *A Theory of Learning and Generalization*. Springer.

Vidyasagar, M. (1997). *A Theory of Learning and Generalization*. Springer.

Warren, D.S. and Najarian, K. (2002). Learning Theory Applied to Sigmoid Network Classification of Protein Biological Function Using Primary Structure. *Discrete and Continuous Dynamical Systems*, Sup., 898–904.

Weyer, E., Williamson, R.C., and Mareels, I.M.Y. (1996). Sample Complexity of Least Squares Identification of FIR Models. *13th IFAC Triennial World Conggrss* (pp. 239–243).