Original Paper

Journal of Insect Conservation

, Volume 15, Issue 1, pp 233-240

First online:

Butterfly abundance in a warming climate: patterns in space and time are not congruent

  • Nick J. B. IsaacAffiliated withCentre for Ecology and Hydrology Email author 
  • , Marco GirardelloAffiliated withCentre for Ecology and Hydrology
  • , Tom M. BreretonAffiliated withButterfly Conservation
  • , David B. RoyAffiliated withCentre for Ecology and Hydrology

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


We present a model of butterfly abundance on transects in England. The model indicates a significant role for climate, but the direction of association is counter to expectation: butterfly population density is higher on sites with a cooler climate. However, the effect is highly heterogeneous, with one in five species displaying a net positive association. We use this model to project the population-level effects of climate warming for the year 2080, using a medium emissions scenario. The results suggest that most populations and species will decline markedly, but that the total number of butterflies will increase as communities become dominated by a few common species. In particular, Maniola jurtina is predicted to make up nearly half of all butterflies on UK Butterfly Monitoring Scheme (UKBMS) transects by 2080. These results contradict the accepted wisdom that most insect populations will grow as the climate becomes warmer. Indeed, our predictions contrast strongly with those derived from inter-annual variation in abundance, emphasizing that we lack a mechanistic understanding about the factors driving butterfly population dynamics over large spatial and temporal scales. Our study underscores the difficulty of predicting future population trends and reveals the naivety of simple space-for-time substitutions, which our projections share with species distribution modelling.


Biotic homogenisation Butterflies Climate change Climate envelope Mixed models Niche Space-for-time substitution UK butterfly monitoring scheme