Skip to main content

Advertisement

Log in

Long-term influence of body mass index on cardiovascular events after atrial fibrillation ablation

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Background

Catheter ablation of atrial fibrillation (AF) is an established therapeutic rhythm approach in symptomatic patients. Obesity is a dominant driver of AF recurrence after ablation. However, being both overweight and underweight drives long-term cardiac and general health risks. Long-term data are needed to understand the influence of body mass index (BMI) on outcomes after ablation in regard to arrhythmia recurrence and cardiovascular outcomes.

Methods

All patients who underwent an index ablation with a BMI recorded and at least 3 years of follow-up were included (n = 1558). The group was separated and compared by index ablation BMI status (≤20, 21–25, 26–30, >30 kg/m2). Long-term outcomes included AF recurrence, stroke/TIA, heart failure (HF) hospitalization, and death.

Results

Patients with advancing BMI status were more likely to be male and have hypertension, a smoking history, diabetes, HF, and a prior cardioversion. Patients with a BMI ≤20 were more likely to have a moderate-high congestive heart failure, hypertension, age >75, diabetes, stroke (CHADS2) score. At 3 years, recurrence rates of AF increased significantly with increasing BMI status (p = 0.02); paradoxically, there was a trend for increased stroke risk with decreasing BMI (p = 0.06). Long-term death rates tended to increase inversely with BMI status, and HF rates were greatest in the highest and lowest BMI groups.

Conclusions

Lower weight at AF ablation lowers arrhythmia recurrence risk. However, AF ablation patients who are normal or underweight remain at high risk of other cardiovascular outcomes including increased stroke risk with less AF burden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M, Benjamin EJ, et al. Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. Circulation. 2014;129(8):837–47.

    Article  PubMed  Google Scholar 

  2. Brunner KJ, Bunch TJ, Mullin CM, May HT, Bair TL, Elliot DW, et al. Clinical predictors of risk for atrial fibrillation: implications for diagnosis and monitoring. Mayo Clin Proc. 2014;89(11):1498–505.

    Article  PubMed  Google Scholar 

  3. Healy GN, Winkler EA, Owen N, Anuradha S, Dunstan DW. Replacing sitting time with standing or stepping: associations with cardio-metabolic risk biomarkers. Eur Heart J. 2015;36(39):2643–9.

    Article  PubMed  Google Scholar 

  4. Nalliah CJ, Sanders P, Kottkamp H, Kalman JM. The role of obesity in atrial fibrillation. Eur Heart J. 2015.

  5. Saydah S, Bullard KM, Cheng Y, Ali MK, Gregg EW, Geiss L, et al. Trends in cardiovascular disease risk factors by obesity level in adults in the United States, NHANES 1999–2010. Obesity. 2014;22(8):1888–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Duncan MJ, Vandelanotte C, Caperchione C, Hanley C, Mummery WK. Temporal trends in and relationships between screen time, physical activity, overweight and obesity. BMC Public Health. 2012;12:1060.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Troost JP, Rafferty AP, Luo Z, Reeves MJ. Temporal and regional trends in the prevalence of healthy lifestyle characteristics: United States, 1994–2007. Am J Public Health. 2012;102(7):1392–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bunch TJ, May HT, Bair TL, Jacobs V, Crandall BG, Cutler M, et al. The impact of age on 5-year outcomes after atrial fibrillation catheter ablation. J Cardiovasc Electrophysiol. 2016;27(2):141–6.

  9. Bunch TJ, Crandall BG, Weiss JP, May HT, Bair TL, Osborn JS, et al. Patients treated with catheter ablation for atrial fibrillation have long-term rates of death, stroke, and dementia similar to patients without atrial fibrillation. J Cardiovasc Electrophysiol. 2011;22(8):839–45.

    Article  PubMed  Google Scholar 

  10. Wilber DJ, Pappone C, Neuzil P, De Paola A, Marchlinski F, Natale A, et al. Comparison of antiarrhythmic drug therapy and radiofrequency catheter ablation in patients with paroxysmal atrial fibrillation: a randomized controlled trial. JAMA: J Am Med Assoc. 2010;303(4):333–40.

    Article  CAS  Google Scholar 

  11. Cosedis Nielsen J, Johannessen A, Raatikainen P, Hindricks G, Walfridsson H, Kongstad O, et al. Radiofrequency ablation as initial therapy in paroxysmal atrial fibrillation. N Engl J Med. 2012;367(17):1587–95.

    Article  PubMed  Google Scholar 

  12. Oral H, Pappone C, Chugh A, Good E, Bogun F, Pelosi Jr F, et al. Circumferential pulmonary-vein ablation for chronic atrial fibrillation. N Engl J Med. 2006;354(9):934–41.

    Article  CAS  PubMed  Google Scholar 

  13. Pathak RK, Elliott A, Middeldorp ME, Meredith M, Mehta AB, Mahajan R, et al. Impact of CARDIOrespiratory FITness on arrhythmia recurrence in obese individuals with atrial fibrillation: the CARDIO-FIT study. J Am Coll Cardiol. 2015;66(9):985–96.

    Article  PubMed  Google Scholar 

  14. Pathak RK, Middeldorp ME, Meredith M, Mehta AB, Mahajan R, Wong CX, et al. Long-term effect of goal-directed weight management in an atrial fibrillation cohort: a long-term follow-up study (LEGACY). J Am Coll Cardiol. 2015;65(20):2159–69.

    Article  PubMed  Google Scholar 

  15. Pathak RK, Middeldorp ME, Lau DH, Mehta AB, Mahajan R, Twomey D, et al. Aggressive risk factor reduction study for atrial fibrillation and implications for the outcome of ablation: the ARREST-AF cohort study. J Am Coll Cardiol. 2014;64(21):2222–31.

    Article  PubMed  Google Scholar 

  16. Abed HS, Wittert GA, Leong DP, Shirazi MG, Bahrami B, Middeldorp ME, et al. Effect of weight reduction and cardiometabolic risk factor management on symptom burden and severity in patients with atrial fibrillation: a randomized clinical trial. JAMA: J Am Med Assoc. 2013;310(19):2050–60.

    Article  CAS  Google Scholar 

  17. Romero-Corral A, Montori VM, Somers VK, Korinek J, Thomas RJ, Allison TG, et al. Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: a systematic review of cohort studies. Lancet. 2006;368(9536):666–78.

    Article  PubMed  Google Scholar 

  18. Roh L, Braun J, Chiolero A, Bopp M, Rohrmann S, Faeh D, et al. Mortality risk associated with underweight: a census-linked cohort of 31,578 individuals with up to 32 years of follow-up. BMC Public Health. 2014;14:371.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mahajan R, Lau DH, Brooks AG, Shipp NJ, Manavis J, Wood JP, et al. Electrophysiological, electroanatomical, and structural remodeling of the atria as consequences of sustained obesity. J Am Coll Cardiol. 2015;66(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  20. Letsas KP, Siklody CH, Korantzopoulos P, Weber R, Burkle G, Mihas CC, et al. The impact of body mass index on the efficacy and safety of catheter ablation of atrial fibrillation. Int J Cardiol. 2013;164(1):94–8.

    Article  PubMed  Google Scholar 

  21. Chilukuri K, Dalal D, Gadrey S, Marine JE, Macpherson E, Henrikson CA, et al. A prospective study evaluating the role of obesity and obstructive sleep apnea for outcomes after catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2010;21(5):521–5.

    Article  PubMed  Google Scholar 

  22. Jongnarangsin K, Chugh A, Good E, Mukerji S, Dey S, Crawford T, et al. Body mass index, obstructive sleep apnea, and outcomes of catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2008;19(7):668–72.

    Article  PubMed  Google Scholar 

  23. Mohanty S, Mohanty P, Di Biase L, Bai R, Dixon A, Burkhardt D, et al. Influence of body mass index on quality of life in atrial fibrillation patients undergoing catheter ablation. Heart Rhythm. 2011;8(12):1847–52.

    Article  PubMed  Google Scholar 

  24. Guijian L, Jinchuan Y, Rongzeng D, Jun Q, Jun W, Wenqing Z. Impact of body mass index on atrial fibrillation recurrence: a meta-analysis of observational studies. Pacing Clin Electrophysiol: PACE. 2013;36(6):748–56.

    Article  PubMed  Google Scholar 

  25. Wagstaff AJ, Overvad TF, Lip GY, Lane DA. Is female sex a risk factor for stroke and thromboembolism in patients with atrial fibrillation? A systematic review and meta-analysis. QJM. 2014;107(12):955–67.

    Article  CAS  PubMed  Google Scholar 

  26. Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest. 2010;137(2):263–72.

    Article  PubMed  Google Scholar 

  27. Wannamethee SG, Shaper AG, Whincup PH, Lennon L, Papacosta O, Sattar N. The obesity paradox in men with coronary heart disease and heart failure: the role of muscle mass and leptin. Int J Cardiol. 2014;171(1):49–55.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wannamethee SG, Shaper AG, Lennon L, Whincup PH. Decreased muscle mass and increased central adiposity are independently related to mortality in older men. Am J Clin Nutr. 2007;86(5):1339–46.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Jared Bunch.

Ethics declarations

Funding

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunch, T.J., May, H.T., Bair, T.L. et al. Long-term influence of body mass index on cardiovascular events after atrial fibrillation ablation. J Interv Card Electrophysiol 46, 259–265 (2016). https://doi.org/10.1007/s10840-016-0142-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-016-0142-5

Keywords

Navigation