, Volume 16, Issue 1, pp 29-34

Influence of different fluoride containing electrolytes on the formation of self-organized titania nanotubes by Ti anodization

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The formation of self-organized porous titania nanotubes is achieved by electrochemical anodization under specific experimental conditions. In present work, the formation of porous titania nanotubes on titanium substrates is investigated in several SO4 2−/F based electrolytes. The presence of some non-porous layers covering the porous layers and accompanying the pore growth is observed. We discuss in details the influence of different electrolyte composition on the structure of self-organized porous layers, investigate the conditions for ideal pore growth. SEM investigations and XRD, AES and EDX surface analyses are carried out to characterize the self-organized porous layers. The results show that using SO4 2−/F electrolytes with different cations can drastically influence the final morphology of the self-organized porous nanotubes. We furthermore show that the nanotubes consist of TiO2 and that they remain unchanged when annealed.