Skip to main content
Log in

Development of spatial coarse-to-fine processing in the visual pathway

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The sequential analysis of information in a coarse-to-fine manner is a fundamental mode of processing in the visual pathway. Spatial frequency (SF) tuning, arguably the most fundamental feature of spatial vision, provides particular intuition within the coarse-to-fine framework: low spatial frequencies convey global information about an image (e.g., general orientation), while high spatial frequencies carry more detailed information (e.g., edges). In this paper, we study the development of cortical spatial frequency tuning. As feedforward input from the lateral geniculate nucleus (LGN) has been shown to have significant influence on cortical coarse-to-fine processing, we present a firing-rate based thalamocortical model which includes both feedforward and feedback components. We analyze the relationship between various model parameters (including cortical feedback strength) and responses. We confirm the importance of the antagonistic relationship between the center and surround responses in thalamic relay cell receptive fields (RFs), and further characterize how specific structural LGN RF parameters affect cortical coarse-to-fine processing. Our results also indicate that the effect of cortical feedback on spatial frequency tuning is age-dependent: in particular, cortical feedback more strongly affects coarse-to-fine processing in kittens than in adults. We use our results to propose an experimentally testable hypothesis for the function of the extensive feedback in the corticothalamic circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alitto, H., & Usrey, W. (2003). Corticothalamic feedback and sensory processing. Current Opinion in Neurobiology, 13(4), 440–445.

    Article  CAS  PubMed  Google Scholar 

  • Allen, E., & Freeman, R. (2006). Dynamic spatial processing originates in early visual pathways. The Journal of Neuroscience, 26(45), 11,763–11,774.

    Article  CAS  Google Scholar 

  • Alonso, J., Usrey, W., Reid, R. (2001). Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. The Journal of Neuroscience, 21(11), 4002–4015.

    CAS  PubMed  Google Scholar 

  • Andolina, I., Jones, H., Sillito, A. (2012). The effects of cortical feedback on the spatial properties of relay cells in the lateral geniculate nucleus. Journal of Neurophysiology. doi:10.1152/jn.00194.2012.

  • Bar, M. (2004). Visual objects in context. Nature Reviews Neuroscience, 5(8), 617–629.

    Article  CAS  PubMed  Google Scholar 

  • Bredfeldt, C., & Ringach, D. (2002). Dynamics of spatial frequency tuning in macaque v1. The Journal of Neuroscience, 22(5), 1976–1984.

    CAS  PubMed  Google Scholar 

  • Briggs, F., & Usrey, W. (2008). Emerging views of corticothalamic function. Current Opinion in Neurobiology, 18(4), 403–407.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cai, D., DeAngelis, G., Freeman, R. (1997). Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. Journal of Neurophysiology, 78(2), 1045–1061.

    CAS  PubMed  Google Scholar 

  • Cudeiro, J., & Sillito, A. (1996). Spatial frequency tuning of orientation-discontinuity-sensitive corticofugal feedback to the cat lateral geniculate nucleus. The Journal of Physiology, 490(Pt 2), 481–492.

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Labra, C., Rivadulla, C., Grieve, K., Mariño, J., Espinosa, N., Cudeiro, J. (2007). Changes in visual responses in the feline dlgn: selective thalamic suppression induced by transcranial magnetic stimulation of v1. Cerebral Cortex, 17(6), 1376–1385.

    Article  PubMed  Google Scholar 

  • DeAngelis, G., Ohzawa, I., Freeman, R. (1993). Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. I. general characteristics and postnatal development. Journal of Neurophysiology, 69(4), 1091–1117.

    CAS  PubMed  Google Scholar 

  • Einevoll, G., & Plesser, H. (2011). Extended difference-of-Gaussians model incorporating cortical feedback for relay cells in the lateral geniculate nucleus of cat. Cognitive Neurodynamics, 6, 307–324.

    Article  Google Scholar 

  • Enroth-Cugell, C., Robson, J., Schweitzer-Tong, D., Watson, A. (1983). Spatio-temporal interactions in cat retinal ganglion cells showing linear spatial summation. The Journal of Physiology, 341(1), 279–307.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frazor, R., Albrecht, D., Geisler, W., Crane, A. (2004). Visual cortex neurons of monkeys and cats: temporal dynamics of the spatial frequency response function. Journal of Neurophysiology, 91(6), 2607–2627.

    Article  PubMed  Google Scholar 

  • Gillespie, D., Lampl, I., Anderson, J., Ferster, D. (2001). Dynamics of the orientation-tuned membrane potential response in cat primary visual cortex. Nature Neuroscience, 4, 1014–1019.

    Article  CAS  PubMed  Google Scholar 

  • Grieve, K., & Sillito, A. (1995). Differential properties of cells in the feline primary visual cortex providing the corticofugal feedback to the lateral geniculate nucleus and visual claustrum. The Journal of Neuroscience, 15(7), 4868–4874.

    CAS  PubMed  Google Scholar 

  • Hayot, F., & Tranchina, D. (2001). Modelling corticofugal feedback and the sensitivity of lateral genculate neurons to orientation discontinuity. Visual Neuroscience, 18(6), 865–878.

    CAS  PubMed  Google Scholar 

  • Köhn, J., & Wörgötter, F. (1996). Corticofugal feedback can reduce the visual latency of responses to antagonistic stimuli. Biological Cybernetics, 75(3), 199–209.

    Article  PubMed  Google Scholar 

  • Mazer, J., Vinje, W., McDermott, J., Schiller, P., Gallant, J. (2002). Spatial frequency and orientation tuning dynamics in area v1. Proceedings of the National Academy of Sciences, 99(3), 1645–1650.

    Article  CAS  Google Scholar 

  • Menz, M., & Freeman, R. (2003). Stereoscopic depth processing in the visual cortex: a coarse-to-fine mechanism. Nature Neuroscience, 6(1), 59–65.

    Article  CAS  PubMed  Google Scholar 

  • Müller, J., Metha, A., Krauskopf, J., Lennie, P. (2001). Information conveyed by onset transients in responses of striate cortical neurons. The Journal of Neuroscience, 21(17), 6978–6990.

    PubMed  Google Scholar 

  • Murphy, P., & Sillito, A. (1987). Corticofugal feedback influences the generation of length tuning in the visual pathway. Nature, 329, 727–729.

    Article  CAS  PubMed  Google Scholar 

  • Nishimoto, S., Arai, M., Ohzawa, I. (2005). Accuracy of subspace mapping of spatiotemporal frequency domain visual receptive fields. Journal of Neurophysiology, 93(6), 3524–3536.

    Article  PubMed  Google Scholar 

  • Ringach, D. (2003). Look at the big picture (details will follow). Nature Neuroscience, 6(1), 7–8.

    Article  CAS  PubMed  Google Scholar 

  • Ringach, D., Hawken, M., Shapley, R., et al (1997). Dynamics of orientation tuning in macaque primary visual cortex. Nature, 387(6630), 281–284.

    Article  CAS  PubMed  Google Scholar 

  • Rivadulla, C., Martinez, L., Grieve, K., Cudeiro, J. (2003). Receptive field structure of burst and tonic firing in feline lateral geniculate nucleus. The Journal of Physiology, 553(2), 601–610.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shapley, R., Hawken, M., Ringach, D. (2003). Dynamics of orientation selectivity in the primary visual cortex and the importance of cortical inhibition. Neuron, 38(5), 689–699.

    Article  CAS  PubMed  Google Scholar 

  • Sherman, S., & Guillery, R. (2001). Exploring the thalamus. Academic Press.

  • Sillito, A., & Jones, H. (2002). Corticothalamic interactions in the transfer of visual information. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357(1428), 1739–1752.

    Article  PubMed Central  PubMed  Google Scholar 

  • Troyer, T., Krukowski, A., Priebe, N., Miller, K. (1998). Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity. The Journal of Neuroscience, 18(15), 5908–5927.

    CAS  PubMed  Google Scholar 

  • Wang, W., Jones, H.E., Andolina, I.M., Salt, T.E., Sillito, A.M. (2006). Functional alignment of feedback effects from visual cortex to thalamus. Nature Neuroscience, 9(10), 1330–1336.

    Article  CAS  PubMed  Google Scholar 

  • Weng, C., Yeh, C., Stoelzel, C., Alonso, J. (2005). Receptive field size and response latency are correlated within the cat visual thalamus. Journal of Neurophysiology, 93(6), 3537–3547.

    Article  PubMed  Google Scholar 

  • Wörgötter, F., Nelle, E., Li, B., Funke, K. (1998). The influence of corticofugal feedback on the temporal structure of visual responses of cat thalamic relay cells. The Journal of Physiology, 509(3), 797–815.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yousif, N., & Denham, M. (2007). The role of cortical feedback in the generation of the temporal receptive field responses of lateral geniculate nucleus neurons: a computational modelling study. Biological Cybernetics, 97(4), 269–277.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I acknowledge Ralph Freeman for the suggestion of studying the developmental process and for helpful discussions. I also thank Bartlett Moore and Miklós Rácz for many helpful discussions and for reading over earlier versions of this paper. I am also very grateful to two anonymous reviewers whose thorough comments vastly improved this manuscript.

Conflict of interests

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmine A. Nirody.

Additional information

Action Editor: Gaute T. Einevoll

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nirody, J.A. Development of spatial coarse-to-fine processing in the visual pathway. J Comput Neurosci 36, 401–414 (2014). https://doi.org/10.1007/s10827-013-0480-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-013-0480-6

Keywords

Navigation