Skip to main content
Log in

Modeling of Dye sensitized solar cells using a finite element method

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper we present an electrical model to simulate a Dye sensitized Solar Cell (DSC) based on a Finite Element Method as an extension of the TiberCAD code. The CAD allows to calculate steady-state properties and ideal IV characteristic of the cell using 1, 2 and 3D meshes for the device. We describe the model and its prerogatives, explaining the code-related problems and the implementation of the model. We show a comparison with a measured IV curve, shading light on revealing the role of different parameters involved in the physics of conversion of light. Finally, an application to an experimental set-up, the Incident Photon to Current Efficiency, is presented, estimating the Collection Efficiency spectrum for a standard DSC and the collection efficiency spectrum for a standard DSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O’Regan, B., Graetzel, M.: Nature 353, 737 (1991)

    Article  Google Scholar 

  2. Graetzel, M.: Nature 421, 586 (2003)

    Article  Google Scholar 

  3. Hagfeldt, A., Graetzel, M.: Chem. Rev. 95, 49 (1995)

    Article  Google Scholar 

  4. Soedergren, S., Hagfeldt, A., Olsson, J., Lindquist, S.E.: J. Phys. Chem. 98, 5552 (1994)

    Article  Google Scholar 

  5. Papageorgiou, N., Graetzel, M., Infelta, P.: Sol. Energy Mater. Sol. Cells 44, 405 (1996)

    Article  Google Scholar 

  6. Matthews, D., Infelta, P., Graetzel, M.: Sol. Energy Mater. Sol. Cells 44, 119 (1996)

    Article  Google Scholar 

  7. Hore, S., Kern, R.: App. Phys. Lett. 87, 263504 (2005)

    Article  Google Scholar 

  8. Ferber, J., Stangl, R., Luther, J.: Sol. Energy Mater. Sol. Cells 53, 29 (1998)

    Article  Google Scholar 

  9. Bisquert, J., Vikhrenko, V.S.: J. Phys. Chem. B 108, 2313 (2004)

    Article  Google Scholar 

  10. Smestad, G.: Sol. Energy Mater. 32, 273 (1994)

    Article  Google Scholar 

  11. Cao, F., Oskam, G., Meyer, G.J., Searson, P.C.: J. Phys. Chem. 100, 17021 (1996)

    Article  Google Scholar 

  12. Fabregat-Santiago, F., Bisquert, J., Palomares, E., Otero, L., Kuang, D., Zakeerudding, S.M., Graetzel, M.: J. Phys. Chem. C 111, 6550 (2007)

    Article  Google Scholar 

  13. Chylek, P., Srivastava, V.: Phys. Rev. B 27, 5098 (1983)

    Article  Google Scholar 

  14. Peter, L.M.: Chem. Phys. 9, 2630 (2007)

    Article  Google Scholar 

  15. Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphry-Baker, R., Mueller, E., Liska, P., Vlachopoulos, N., Graetzel, M.: J. Am. Chem. Soc. 115, 6382 (1993)

    Article  Google Scholar 

  16. Kubo, W., Sakamoto, A., Kitamura, T., Wada, Y., Yanagida, S.: J. Photochem. Photobiol. A 164, 33 (2004)

    Article  Google Scholar 

  17. Wang, Z., Kawauchi, H., Kashima, T., Arakawa, H.: Coord. Chem. Rev. 248, 1381 (2004)

    Article  Google Scholar 

  18. Barbe, C.J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V., Graetzel, M.: J. Am. Ceram. Soc. 80, 3157 (1997)

    Article  Google Scholar 

  19. Durrant, J.R., Haque, S.A., Palomares, E.: Coord. Chem. Rev. 248, 1247 (2004)

    Article  Google Scholar 

  20. Watson, D.F., Meyer, G.J.: Coord. Chem. Rev. 248, 1391 (2004)

    Article  Google Scholar 

  21. Haque, S.A., Palomares, E., Cho, B.M., Green, A.N.M., Hirata, N., Klug, D.R., Durrant, J.R.: J. Am. Chem. Soc. 127, 3456 (2005)

    Article  Google Scholar 

  22. Lee, K., Suryanarayanan, V., Ho, K., Justin, T.K.R., Lin, J.T.: Sol. Energy Mater. Sol. Cells 91, 1426 (2007)

    Article  Google Scholar 

  23. Kusama, H., Kurashige, M., Arakawa, H.: J. Photochem. Photobiol. A 169, 169 (2005)

    Article  Google Scholar 

  24. Kay, A., Graetzel, M.: Chem. Mater. 14, 2930 (2002)

    Article  Google Scholar 

  25. Kumara, G.R.R.A., Tennakone, K., Perera, V.P.S., Konno, A., Kaneko, S., Okuya, M.: J. Phys. D: Appl. Phys. 34, 868 (2001)

    Article  Google Scholar 

  26. Lindstroem, H., Holmberg, A., Magnusson, E., Lindquist, S., Malmqvist, L., Hagfeldt, A.: Nano Lett. 1, 97 (2001)

    Article  Google Scholar 

  27. Hagfeldt, A., Boschloo, G., Lindstroem, H., Figgemeier, E., Holmberg, A., Aranyos, V., Magnusson, E., Malmqvist, L.: Coord. Chem. Rev. 1501, 248 (2004)

    Google Scholar 

  28. Miyasaka, T., Kihirori, Y., Ikegami, M.: Electrochemistry 75, 2 (2007)

    Google Scholar 

  29. Tachibana, Y., Hara, K., Sayama, K., Arakawa, H.: Chem. Mater. 14, 2527 (2002)

    Article  Google Scholar 

  30. Halme, J., Boschloo, G., Hagfeldt, A., Lund, P.: J. Phys. Chem. C 112, 5623 (2008)

    Google Scholar 

  31. Ferber, J., Luther, J.: J. Phys. Chem. B 105, 4895 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Gagliardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gagliardi, A., Auf der Maur, M., Gentilini, D. et al. Modeling of Dye sensitized solar cells using a finite element method. J Comput Electron 8, 398–409 (2009). https://doi.org/10.1007/s10825-009-0298-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-009-0298-7

Keywords

Navigation