, Volume 26, Issue 3, pp 267-277
Date: 05 Jan 2012

Development of energetic pharmacophore for the designing of 1,2,3,4-tetrahydropyrimidine derivatives as selective cyclooxygenase-2 inhibitors

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

We present here the Energetic pharmacophore model representing complementary features of the 1,2,3,4-tetrahydropyrimidine for selective cyclooxygenase-2 (COX-2) inhibition. For the development of pharmacophore hypothesis, a total of 43 previously reported compounds were docked on active site of COX-2 enzyme. The generated pharmacophore features were ranked using energetic terms of Glide XP docking for 1,2,3,4-tetrahydropyrimidine scaffold to optimize its structure requirement for COX-2 inhibition. The thirty new 4,5,6-triphenyl-1,2,3,4-tetrahydropyrimidine derivatives were synthesized and assessed for selective COX-2 inhibitory activity. Two compounds 4B1 and 4B11 were found to be potent and selective COX-2 inhibitors. The molecular docking studies revealed that the newly synthesized compounds can be docked into COX-2 binding site and also provide the molecular basis for their activity.