, Volume 24, Issue 3, pp 225-235
Date: 24 Mar 2010

Conformational landscape of platinum(II)-tetraamine complexes: DFT and NBO studies

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The potential energy surfaces of chiral tetraamine Pt(II) coordination complexes were computed at the B3LYP/LANL2DZ level of theory by a systematic variation of two dihedral angles: C12–C15–C34–C37 (θ) and C24–C17–C31–C48 (ψ) employing a grid resolution of 30°. Potential energy surfaces calculated using density functional theory methods and Boltzmann-derived populations revealed strong preference for one diasteromer of each series studied. In addition, natural bond orbital analysis show that the minima are stabilized predominantly by a combination of electronic interactions between two phenyl groups, the phenyl groups and the Pt2+ ion, as well as with the amine groups. Additional experimental characterization of the diasteroisomers studied here is in progress and will permit further molecular modeling studies with the appropriate stereochemistry.