Skip to main content

Advertisement

Log in

Energetic analysis of fragment docking and application to structure-based pharmacophore hypothesis generation

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We have developed a method that uses energetic analysis of structure-based fragment docking to elucidate key features for molecular recognition. This hybrid ligand- and structure-based methodology uses an atomic breakdown of the energy terms from the Glide XP scoring function to locate key pharmacophoric features from the docked fragments. First, we show that Glide accurately docks fragments, producing a root mean squared deviation (RMSD) of <1.0 Å for the top scoring pose to the native crystal structure. We then describe fragment-specific docking settings developed to generate poses that explore every pocket of a binding site while maintaining the docking accuracy of the top scoring pose. Next, we describe how the energy terms from the Glide XP scoring function are mapped onto pharmacophore sites from the docked fragments in order to rank their importance for binding. Using this energetic analysis we show that the most energetically favorable pharmacophore sites are consistent with features from known tight binding compounds. Finally, we describe a method to use the energetically selected sites from fragment docking to develop a pharmacophore hypothesis that can be used in virtual database screening to retrieve diverse compounds. We find that this method produces viable hypotheses that are consistent with known active compounds. In addition to retrieving diverse compounds that are not biased by the co-crystallized ligand, the method is able to recover known active compounds from a database screen, with an average enrichment of 8.1 in the top 1% of the database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Erlanson DA, McDowell RS, O’Brien T (2004) J Med Chem 47:3463. doi:10.1021/jm040031v

    Article  CAS  Google Scholar 

  2. Boehm H-J, Boehringer M, Bur D, Gmuender H, Huber W, Klaus W, Kostrewa D, Kuehne H, Luebbers T, Meunier-Keller N, Mueller F (2000) J Med Chem 43:2664. doi:10.1021/jm000017s

    Article  CAS  Google Scholar 

  3. Gill A (2004) Mini Rev Med Chem 4:301. doi:10.2174/1389557043487385

    Article  CAS  Google Scholar 

  4. Card GL, Blasdel L, England BP, Zhang C, Suzuki Y, Gillette S, Fong D, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim S-H, Schlessinger J, Zhang KYJ (2005) Nat Biotechnol 23:201. doi:10.1038/nbt1059

    Article  CAS  Google Scholar 

  5. Hartshorn MJ, Murray CW, Cleasby A, Frederickson M, Tickle IJ, Jhoti H (2005) J Med Chem 48:403. doi:10.1021/jm0495778

    Article  CAS  Google Scholar 

  6. Nienaber VL, Richardson PL, Klighofer V, Bouska JJ, Giranda VL, Greer J (2000) Nat Biotechnol 18:1105. doi:10.1038/80319

    Article  CAS  Google Scholar 

  7. Tondi D, Morandi F, Bonnet R, Costi MP, Shoichet BK (2005) J Am Chem Soc 127:4632. doi:10.1021/ja042984o

    Article  CAS  Google Scholar 

  8. Hajduk PJ, Greer J (2007) Nat Rev Drug Discov 6:211. doi:10.1038/nrd2220

    Article  CAS  Google Scholar 

  9. Tobias Fink HB, Reymond J (2005) Angew Chem 117:1528. doi:10.1002/ange.200462457

    Article  Google Scholar 

  10. Martin YC (1981) J Med Chem 24:229. doi:10.1021/jm00135a001

    Article  CAS  Google Scholar 

  11. Babaoglu K, Shoichet BK (2006) Nat Chem Biol 2:720. doi:10.1038/nchembio831

    Article  CAS  Google Scholar 

  12. Sherman W, Day T, Jacobson MP, Friesner RA, Farid R (2006) J Med Chem 49:534. doi:10.1021/jm050540c

    Article  CAS  Google Scholar 

  13. Moitessier N, Therrien E, Hanessian S (2006) J Med Chem 49:5885

    Article  CAS  Google Scholar 

  14. Nabuurs SB, Wagener M, de Vlieg J (2007) J Med Chem 50:6507

    Article  CAS  Google Scholar 

  15. Zhou Z, Felts AK, Friesner RA, Levy RM (2007) J Chem Inf Model 47:1599

    Article  CAS  Google Scholar 

  16. Perola E, Walters WP, Charifson PS (2004) Proteins 56:235

    Article  CAS  Google Scholar 

  17. Marcou G, Rognan D (2007) J Chem Inf Model 47:195

    Article  CAS  Google Scholar 

  18. Cole JC, Murray CW, Nissink JW, Taylor RD, Taylor R (2005) Proteins 60:325

    Article  CAS  Google Scholar 

  19. Deng Z, Chuaqui C, Singh J (2004) J Med Chem 47:337

    Article  CAS  Google Scholar 

  20. Yusuf D, Davis AM, Kleywegt GJ, Schmitt S (2008) J Chem Inf Model 48:1411

    Article  CAS  Google Scholar 

  21. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) J Med Chem 49:6177

    Article  CAS  Google Scholar 

  22. Schrödinger Fragment Library (2008) Schrödinger, Inc. http://www.schrodinger.com/ProductInfo.php?mID=6&sID=6&cID=53

  23. Bemis GWM, Murcko MA (1996) J Med Chem 39:7

    Article  Google Scholar 

  24. Fejzo J, Lepre CA, Peng JW, Bemis GW, Ajay, Murcko MA, Moore JM (1999) Chem Biol 6:755

    Article  CAS  Google Scholar 

  25. Huth JR, Sun C (2002) Comb Chem High Throughput Screen 5:631

    CAS  Google Scholar 

  26. Hajduk PJ, Bures M, Praestgaard J, Fesik SW (2000) J Med Chem 43:3443

    Article  CAS  Google Scholar 

  27. Jacoby E, Davies J, Blommers MJJ (2003) Curr Top Med Chem 3:11

    Article  CAS  Google Scholar 

  28. Maestro v8.5, Schrödinger, Inc.: Portland, OR

  29. Impact v5.0, Schrödinger, Inc.: Portland, OR

  30. LigPrep v2.2, Schrödinger, Inc.: Portland, OR

  31. Epik v1.6, Schrödinger, Inc.: Portland, OR

  32. Glide v5.0, Schrödinger, Inc.: Portland, OR

  33. Kuntz ID, Chen K, Sharp KA, Kollman PA (1999) Proc Natl Acad Sci USA 96:9997

    Article  CAS  Google Scholar 

  34. Volume_cluster.py from the Schrödinger ScriptCenter (2008) Schrödinger, Inc. http://www.schrodinger.com/ScriptCenter.php

  35. Phase v3.0, Schrödinger, Inc.: Portland, OR

  36. Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) J Comput-Aided Mol Des 11:425

    Article  CAS  Google Scholar 

  37. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) J Med Chem 47:1750

    Article  CAS  Google Scholar 

  38. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) J Med Chem 47:1739

    Article  CAS  Google Scholar 

  39. Wang Z, Canagarajah BJ, Boehm JC, Kassisa S, Cobb MH, Young PR, Abdel-Meguid S, Adams JL, Goldsmith EJ (1998) Structure 39:12

    CAS  Google Scholar 

  40. Dixon S, Smondyrev A, Knoll E, Rao S, Shaw D, Friesner R (2006) J Comput-Aided Mol Des 20:647

    Article  CAS  Google Scholar 

  41. Congreve M, Chessari G, Tisi D, Woodhead AJ (2008) J Med Chem 51:3661

    Article  CAS  Google Scholar 

  42. Damm KL, Carlson HA (2006) Biophys J 90:4558

    Article  CAS  Google Scholar 

  43. Meyer EA, Furler M, Diederich F, Brenk R, Klebe G (2004) Helv Chim Acta 87:1333

    Article  CAS  Google Scholar 

  44. Wu Q, Gee CL, Lin F, Tyndall JD, Martin JL, Grunewald GL, McLeish MJ (2005) J Med Chem 48:7243

    Article  CAS  Google Scholar 

  45. Canvas v1.1, Schrödinger, Inc.: Portland, OR

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn Loving.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(GZ 1755 kb)

(GZ 143 kb)

(PDF 6 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loving, K., Salam, N.K. & Sherman, W. Energetic analysis of fragment docking and application to structure-based pharmacophore hypothesis generation. J Comput Aided Mol Des 23, 541–554 (2009). https://doi.org/10.1007/s10822-009-9268-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-009-9268-1

Keywords

Navigation