Skip to main content

Advertisement

Log in

A recursive-partitioning model for blood–brain barrier permeation

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

A series of bagged recursive partitioning models for log(BB) is presented. Using a LGO-CV, three sets of physical property descriptors are evaluated and found to have Q2 values of 0.51 (CPSA), 0.53 (Ro5x) and 0.53 (MOE). Extrapolating these models to Pfizer chemical space is difficult due to P-glycoprotein (P-gp) mediated efflux. Low correlation coefficients for this test set are improved (R 2=0.39) when compounds known to be P-gp substrates or statistical extrapolations are removed. The use of simple linear models for specific chemical series is also found to improve the correlation over a limited chemical space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Young R.C., et al., (1988) J. Med. Chem. 31: 656

    CAS  Google Scholar 

  2. Abraham M.H., Chadha H., Mitchell R.C., (1994) J. Pharm. Sci. 83: 1257

    CAS  Google Scholar 

  3. Lombardo F., Blake J.F., Curatolo W.J., (1996) J. Med. Chem. 39: 4750

    CAS  Google Scholar 

  4. Platts J.A., et al., (2001) Eur. J. Med. Chem. 36: 719

    CAS  Google Scholar 

  5. Clark D.E., (1999) J. Pharm. Sci. 88: 815

    CAS  Google Scholar 

  6. Kelder J., et al., (1999) Pharma. Res. 16: 1514

    CAS  Google Scholar 

  7. Iyer M., et al., (2002) Pharma. Res. 19: 1611

    CAS  Google Scholar 

  8. Doniger S., Hofmann T., Yeh J., (2002) J. Comp. Bio. 9: 849

    CAS  Google Scholar 

  9. van de Waterbeemd H., Kansy M., (1992) Chimia. 46: 299

    Google Scholar 

  10. Chadha H., Abraham M.H., Mitchell R.C., (1994) Bio. Med. Chem. Lett. 4: 2511

    CAS  Google Scholar 

  11. Sippl W., (2002) Curr. Med. Chem.: Central Nervous Syst. Agents. 2: 211

    CAS  Google Scholar 

  12. Atkinson F., et al., (2002) Curr. Med. Chem.: Central Nervous Syst. Agents. 2: 229

    CAS  Google Scholar 

  13. Penzotti J.E., Landrum G.A., Putta S., (2004) Curr. Opinion Drug Discovery Dev. 7: 49

    CAS  Google Scholar 

  14. Lipinski, C.A., In Spellmeyer D.C., (Ed.), Annual Reports in Computational Chemistry, Elsevier: Amsterdam, pp. 155–168

  15. Norinder U., Sjoberg P., Osterberg T., (1998) J. Pharm. Sci. 87:952

    CAS  Google Scholar 

  16. Osterber T., Norinder U., (2001) Eur. J. Pharm. Sci. 12: 327

    Google Scholar 

  17. Luco J.M., (1999) J. Chem. Inf. Comput. Sci. 39: 396

    CAS  Google Scholar 

  18. Rose K., Hall L.H., Kier L.B., (2002) J. Chem. Inf. Comput. Sci. 42: 651

    CAS  Google Scholar 

  19. Ajay G.W., Bemis, Murcko M.A., (1999) J. Med. Chem. 42: 4942

    CAS  Google Scholar 

  20. Crivori P., et al., (2000) J. Med. Chem. 43: 2204

    CAS  Google Scholar 

  21. Adenot M., Lahana R., (2004) J. Chem. Inf. Comput. Sci. 44: 239

    CAS  Google Scholar 

  22. Maclin R., Opitz D., (1999) J. Art. Intelligence Res. 11: 169

    Google Scholar 

  23. Stanton D.T., Jurs P., (1990) C., Anal. Chem. 62: 2323

    CAS  Google Scholar 

  24. Lipinski C.A., et al., (1997) Adv. Drug Del. Rev. 23: 3

    CAS  Google Scholar 

  25. Labute P., (2000) J. Mol. Graphics Model. 18: 464

    CAS  Google Scholar 

  26. Cruciani G., et al., (2000) J. Mol. Struct.: THEOCHEM.503: 17

    CAS  Google Scholar 

  27. Cruciani, G., Pastor, M. and Clementi, S., In: Gundertofte, K. and Jorgensen, F.E., (Eds.), Molecular Modeling and Prediction of Bioactivity, Kluwer Academic/Plenum Publishers: New York, 2000, 73pp

  28. Maw H.H., Hall L.H., (2000) J. Chem. Inf. Comput. Sci. 40: 1270

    CAS  Google Scholar 

  29. Kimberly R., Hall L.H., (2002) J. Chem. Inf. Comput. Sci. 42: 651

    Google Scholar 

  30. Gasteiger J., Rudolph C., (1990) J. Sadowski, Tetrahedron Comp. Method. 3: 537

    CAS  Google Scholar 

  31. Hawkins G.D., et al., 2003 AMSOL. University of Minnesota: Minneapolis

    Google Scholar 

  32. Hawkins G.D., Cramer C.J., Truhlar D.G., (1996) J. Phys. Chem. 100: 19824

    CAS  Google Scholar 

  33. Chambers C.C., et al., (1996) J. Phys. Chem. 100: 16385

    CAS  Google Scholar 

  34. Pearlman, R.S., In Valvani S.C. (Ed.), Physical Chemical Properties of Drugs, Marcel Dekker: New York, 1980

  35. Andrews P.R., Craik D.J., Martin J.L., (1984) J. Med. Chem. 27: 1648

    CAS  Google Scholar 

  36. BioByte, CLOGP. 2005, BioByte Corp: Claremont, CA

  37. Ertle P., Rohde B., Selter P., (2000) J. Med. Chem. 43: 3714

    Google Scholar 

  38. Moriguchi I., et al., (1992) Chem. Pharmacol. Bull. 40: 127

    CAS  Google Scholar 

  39. Chemical Computing Group Inc, C., 2000 Molecular Operating Environment. Chemical Computing Group Inc: Montreal

    Google Scholar 

  40. Gasteiger J., Marsili M., (1980) Tetrahedron, 36: 3219

    CAS  Google Scholar 

  41. Kalvass J.C., Maurer T.S., (2002) Biopharma. Drug Disposition, 23: 327

    CAS  Google Scholar 

  42. Waterbeemd, H.v.d., Smith D.A., Jones B.C., (2001) J. Comp.-Aided Mol. Design. 15: 273

    Google Scholar 

  43. Brejc K., et al., (2001) Nature 411: 269

    CAS  Google Scholar 

  44. Iven H., Feldbusch E., (1983) Naunyn-Schmiedeberg’s Arch Pharmacol. 324: 153

    CAS  Google Scholar 

  45. Timmermans P.B.M.W.M., Brands A., Van Zwieten A., (1977) Arch. Pharmacol. 300: 217

    CAS  Google Scholar 

  46. Cvetkovic M., et al., (1999) Drug Metabol. Dispos. 27: 866

    CAS  Google Scholar 

  47. de Lange E.C.M., et al., (1994) Brain Research, 666: 1

    Google Scholar 

  48. Miyagi N., et al., (1986) J. Pharmacobio-Dynamics 9: 704

    CAS  Google Scholar 

  49. Rizk M., Curro F.A., Abdel-Rahman M.S., (1995) Pharmacol. Commun. 6: 295

    CAS  Google Scholar 

  50. Bickel M., Gerny R., (1980) J. Pharmacy Pharmacol. 32: 669

    CAS  Google Scholar 

  51. Dambisya Y.M., Chan K., Wong C.-L., (1992) J. Pharmacy Pharmacol. 44: 687–690

    CAS  Google Scholar 

  52. Cox D.S., et al., (2001) J. Pharm. Sci. 90: 1540

    CAS  Google Scholar 

  53. Chou R.C., Levy G., (1981) J. Pharm. Exp. Therapeutics 219: 42

    CAS  Google Scholar 

  54. Kunsman G.W., Rohrig T.P., (1993) Am. J. Forensic Med. Pathol. 14: 48

    CAS  Google Scholar 

  55. Yata N., et al., (1990) Pharma. Res. 7: 1019

    CAS  Google Scholar 

  56. Vajda F.J.E., et al., (1981) Neurology 31: 486

    CAS  Google Scholar 

  57. Bolo N.R., et al., (2000) Neuropsychopharmacology 23: 428

    CAS  Google Scholar 

  58. Lefebvre M., et al., (1999) Life Sci. 64: 805

    CAS  Google Scholar 

  59. Hosseini-Yeganeh M., Mclachlan A.J., (2001) J. Pharm. Sci. 90: 1817

    CAS  Google Scholar 

  60. Cheng F.C., et al., (2002) J. Chromatography, A. 949: 35

    CAS  Google Scholar 

  61. Borg N., Stahle L., (1998) Antimicrob. Agents Chemother. 42: 2174

    CAS  Google Scholar 

  62. Ibrahim S.S., et al., (1996) Antivirial Chem. Chemother. 7: 167

    CAS  Google Scholar 

  63. Choo E.F., et al., (2000) Drug Metabolism Disposition 28: 655

    CAS  Google Scholar 

  64. Anderson B.D., et al., (1990) J. Pharm. Exp. Therapeutics 253: 113

    CAS  Google Scholar 

  65. Glynn S.L., Yazdanian M., (1998) J. Pharm. Sci. 87: 306

    CAS  Google Scholar 

  66. Bolander H.G., Wahlstrom G., (1984) Neuropharmacology 23: 977

    CAS  Google Scholar 

  67. Bolander H.G., Wahlstrom G., Norberg L., (1984) Acta. Phar. et. Tox. 54: 33

    CAS  Google Scholar 

  68. Lin Y.-J., et al., (1973) Chem. Pharmacol. Bull. 21: 2749

    CAS  Google Scholar 

  69. Arendt R.M., et al., (1987) Psychopharmacology 93: 72

    CAS  Google Scholar 

  70. Mandema J., Kuck W.M.T., Danhof M., (1992) Br. J. Pharmacol. 105: 164

    CAS  Google Scholar 

  71. Scavone J.M., et al., (1987) Arzneim.-Forsch. 37: 2

    CAS  Google Scholar 

  72. Lin J.H., Chen I.-W., Lin T.-H., (1994) J. Pharm. Exp. Therapeutics 271: 1197

    CAS  Google Scholar 

  73. Baselt R.C., 2002 Disposition of Toxic Drugs and Chemicals in Man, 6 Foster City, CA: Chemical Toxicology Institute

    Google Scholar 

  74. Cruickshank J.M., et al., (1980) Clin. Sci. 59: 453s

    CAS  Google Scholar 

  75. Arendt R.M., et al., (1984) Cardiology 71: 307

    Article  CAS  Google Scholar 

  76. Matsui K., et al., (1999) Drug Metabol. Disposition 27: 1406

    CAS  Google Scholar 

  77. Kewitz H., (1997) Drugs Today 33: 265

    Article  CAS  Google Scholar 

  78. Kosasa T., et al., (2000) Eur. J. Pharmacol. 389: 173

    CAS  Google Scholar 

  79. Vezzani A., et al., (1989) J. Pharm. Exp. Therapeutics, 249: 278

    CAS  Google Scholar 

  80. Kuroda S., et al., (2001) Chem. Pharmacol. Bull. 49: 988

    CAS  Google Scholar 

  81. Calder J.A.D., Ganellin C.R., (1994) Drug Design Discovery 11: 259

    CAS  Google Scholar 

  82. Polli J.W., et al., (2003) J. Pharm. Sci. 92: 2082

    CAS  Google Scholar 

  83. Pong S.F., Huang C.L., (1974) J. Pharm. Sci. 63: 1527

    CAS  Google Scholar 

  84. Brown E.A., et al., (1986) Br. J. Pharmacol. 87:569

    CAS  Google Scholar 

  85. Barkai A.I., Suckow R.F., Cooper T.B., (1984) J. Pharm. Exp. Therapeutics. 230: 330

    CAS  Google Scholar 

  86. Doran A., et al., (2005) Drug Metabol. Disposition 33:165

    CAS  Google Scholar 

  87. Hirose H., et al., (2001) J. Pharm. Exp. Therapeutics 297:790

    CAS  Google Scholar 

  88. Schmalzing G., (1977) Drug Metabol. Disposition 5: 104

    CAS  Google Scholar 

  89. Tsuneizumi T., Babb S.M., Cohen B.M., (1992) Biol. Psychiatr. 32: 817

    CAS  Google Scholar 

  90. Sunderland T., Cohen B.M., (1987) Psychiatr. Res. 20: 299

    CAS  Google Scholar 

  91. Hu O.Y.-P., Curry S.H., (1989) Biopharma. Drug Disposition 10: 537

    CAS  Google Scholar 

  92. Yeleswaram K., et al., (1995) Res. Comm. Mol. Pathology Pharmacol. 89: 27

    CAS  Google Scholar 

  93. Scales B., Cosgrove M.B., (1970) J. Pharm. Exp. Therapeutics 175: 338

    CAS  Google Scholar 

  94. Riah O., et al., (1998) Cell. Mol. Neurobiol. 18: 311

    CAS  Google Scholar 

  95. Ghosheh O.A., et al., (2001) Drug Metabol. Disposition 29: 645

    CAS  Google Scholar 

  96. Romano C., Goldstein A., Jewell N.P., (1981) Psychopharmacology 74: 310

    CAS  Google Scholar 

  97. Rowell P.P., Li M.,. (1997) J. Neurochem. 68: 1982

    Article  CAS  Google Scholar 

  98. Schroeder D.H., (1983) J. Clin. Psychiatr. 44: 79

    CAS  Google Scholar 

  99. Kaplan G.B., et al., (1989) J. Pharm. Exp. Therapeutics 248: 1078

    CAS  Google Scholar 

  100. Wilkinson J.M., Pollard I., (1993) Dev. Brain Res. 75: 193

    CAS  Google Scholar 

  101. Terasaki T., et al., (1992) Int. J. Pharmaceutics 81: 143

    CAS  Google Scholar 

  102. Stahle L., (1991) Life Sci. 49: 1835

    CAS  Google Scholar 

  103. Ramzan I.M., Levy G., (1986) J. Pharm. Exp. Therapeutics 236: 708

    CAS  Google Scholar 

  104. Ohshima N., et al., (1995) Biol. Pharma. Bull. 18: 70

    CAS  Google Scholar 

  105. Argent D., D’Mello A.P., (1994) J. Pharm. Exp. Therapeutics 270: 512

    Google Scholar 

  106. Okuyama S., Aihara H., (1984) Jpn. J. Pharmacol. 35: 95

    CAS  Google Scholar 

  107. Van Belle K., et al., (1995) J. Pharm. Exp. Therapeutics 272: 1217

    Google Scholar 

  108. Overo K.F., Jorgensen A., Hansen V., (1970) Acta. Phar. et. Tox. 28: 81

    CAS  Google Scholar 

  109. Yang H., Wang Q., Elmquist W.F., (1996) Pharma. Res. 13: 1570

    CAS  Google Scholar 

  110. Von Moltke L.L., et al., (2004) Drug Metab. Disposition 32: 800

    Google Scholar 

  111. Aravagiri M., Yuwiler A., Marder S.R., (1998) Psychopharmacology 139: 356

    CAS  Google Scholar 

  112. Yang Z., et al., (1997) Pharma. Res. 14: 865

    Google Scholar 

  113. McNally W., et al., (1989) Pharma. Res. 6: 924

    CAS  Google Scholar 

  114. Pan W.-J., Hedaya M.A., (1999) J. Pharm. Sci. 88: 468

    CAS  Google Scholar 

  115. Brogden, R.N., et al., Drugs, 24 (1982) 360

  116. Lobell M., Molnar L., Keseru G.M., (2002) J. Pharm. Sci. 92: 360

    Google Scholar 

  117. Hou T., Xu X., (2002) J. Mol. Model, 8: 337

    CAS  Google Scholar 

  118. Keseru G.M., Molnar L., (2001) J. Chem. Inf. Comput. Sci. 41: 120

    CAS  Google Scholar 

  119. Bennet B., et al., (2000) J. Biol. Chem. 275: 20647

    Google Scholar 

  120. Shearman M.S., et al., (2000) Biochemistry 39: 8698

    CAS  Google Scholar 

  121. Jakovljevic V., Banic B., Radunovic A., (1991) Eur. J. Drug. Met. Pharmacokinetics 16:171

    Article  CAS  Google Scholar 

  122. Reavill C., et al., (1990) Neuropharmacology 29: 619

    CAS  Google Scholar 

  123. Pentel P.R., et al., (2000) Pharmacol. Biochem. Behavior 65: 191

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Pfizer Groton CNS Pharmacokinetics Dynamics and Metabolism (PDM) group for helpful discussion and invaluable in vivo data measurements. We also thank David Potter (Pfizer, Groton Non-Clinical Statistics Group), Matt Wessel, Greg Bakken and Jing Lu (Pfizer, Groton, Scientific Computing Group) for assistance with statistical methodology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.R. Mente*.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mente*, S., Lombardo, F. A recursive-partitioning model for blood–brain barrier permeation. J Comput Aided Mol Des 19, 465–481 (2005). https://doi.org/10.1007/s10822-005-9001-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-005-9001-7

Keywords

Navigation