Skip to main content
Log in

Using Isabelle/HOL to Verify First-Order Relativity Theory

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

Logicians at the Rényi Mathematical Institute in Budapest have spent several years developing versions of relativity theory (special, general, and other variants) based wholly on first-order logic, and have argued in favour of the physical decidability, via exploitation of cosmological phenomena, of formally unsolvable questions such as the Halting Problem and the consistency of set theory. As part of a joint project, researchers at Sheffield have recently started generating rigorous machine-verified versions of the Hungarian proofs, so as to demonstrate the soundness of their work. In this paper, we explain the background to the project and demonstrate a first-order proof in Isabelle/HOL of the theorem “no inertial observer can travel faster than light”. This approach to physical theories and physical computability has several pay-offs, because the precision with which physical theories need to be formalised within automated proof systems forces us to recognise subtly hidden assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andréka, H., Madarász, J.X., Németi, I.: Logical analysis of relativity theories. In: Hendricks, H., et al. (eds.) First-Order Logic Revisited, pp. 1–30. Logos-Verlag, Berlin (2004)

    Google Scholar 

  2. Andréka, H., Madarász, J.X., Németi, I., Székely, G.: Axiomatizing relativistic dynamics without conservation postulates. Stud. Logica 89(2), 163–186 (2008)

    Article  MATH  Google Scholar 

  3. Wenzel, M.: The Isabelle/Isar reference manual. Online: http://isabelle.in.tum.de/dist/Isabelle2012/doc/isar-ref.pdf (2012)

  4. Einstein, A.: Relativity: The Special and General Theory. Henry Holt, New York (1920)

    Google Scholar 

  5. Andréka, H., Madarász, J.X., Németi, I., Székely, G.: A logic road from special relativity to general relativity. Synthese 186(3), 633–649 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc., Series 2 42, 230–265 (1937, submitted May 1936)

    Article  Google Scholar 

  7. Hogarth, M.: Does general relativity allow an observer to view an eternity in a finite time? Found. Phys. Lett. 5, 173–181 (1992)

    MathSciNet  Google Scholar 

  8. Earman, J., Norton, J.: Forever is a day: supertasks in Pitowsky and Malament-Hogarth spacetimes. Philos. Sci. 5, 22–42 (1993)

    Article  MathSciNet  Google Scholar 

  9. Etesi, G., Németi, I.: Non-turing computations via Malament-Hogarth space-times. Int. J. Theor. Phys. 41, 341–370 (2002). Online: arXiv: gr-qc/0104023v2

    Article  MATH  Google Scholar 

  10. Hogarth, M.: Deciding arithmetic using SAD computers. Br. J. Philos. Sci. 55, 681–691 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Manchak, J.B.: On the possibility of supertasks in general relativity. Found. Phys. 40, 276–288 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Andréka, H., Németi, I., Székely, G.: Closed timelike curves in relativistic computation. Online: arXiv: 1105.0047 [gr-qc] (2012)

  13. Stannett, M.: The case for hypercomputation. Appl. Math. Comput. 178, 8–24 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Székely, G.: First-order logic investigation of relativity theory with an emphasis on accelerated observers. PhD thesis, Eötvös Loránd University (2009). Online: http://arxiv.org/pdf/1005.0973.pdf

  15. Gömöri, M., Szabó, L.E.: On the formal statement of the special principle of relativity. Online: http://philsci-archive.pitt.edu/9151/4/MG-LESz-math-rel-preprint-v3.pdf (2011)

  16. Sundar G., N., Bringsjord, S., Taylor, J.: Proof verification and proof discovery for relativity. In: First International Conference on Logic and Relativity: Honoring István Németi’s 70th birthday, 8–12 September 2012, Budapest. Rényi Institute, Budapest (2012). Online: http://www.renyi.hu/conferences/nemeti70/LR12Talks/govindarejulu-bringsjord.pdf

  17. Csuhaj-Varjú, E., Gheorghe, M., Stannett, M.: P systems controlled by general topologies. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC. Lecture Notes in Computer Science, vol. 7445, pp. 70–81. Springer, Berlin (2012)

    Google Scholar 

  18. Németi, P., Székely, G.: Existence of faster than light signals implies hypercomputation already in special relativity. In: Cooper, S.B., Dawar, A., Löwe, B. (eds.) How the World Computes: Turing Centenary Conference and 8th Conference on Computability in Europe, CiE 2012, 18–23 June 2012, Cambridge, UK, Proceedings. Lecture Notes in Computer Science, vol. 7318, pp. 528–538. Springer, Berlin Heidelberg (2012)

  19. Székely, G.: The existence of superluminal particles is consistent with the kinematics of Einstein’s special theory of relativity. Online: arXiv:1202.5790 [physics.gen-ph] (2012)

  20. Madarász, J.X., Németi, I., Székely, G.: Twin Paradox and the logical foundation of relativity theory. Found. Phys. 36(5), 681–714 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Turing, A.M.: Computing machinery and intelligence. Mind 59, 433–460 (1950)

    Article  MathSciNet  Google Scholar 

  22. Stannett, M.: Membrane systems and hypercomputation. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds) Membrane Computing. Lecture Notes in Computer Science, vol. 7762, pp. 78–87. Springer, Berlin Heidelberg (2013)

    Google Scholar 

  23. Gillessen, S., Eisenhauer, F., Trippe, S., Alexander, T., Genzel, R., Martins, F., Ott, T.: Monitoring stellar orbits around the massive black hole in the Galactic center. Astrophys. J. 692, 1075–1109 (2009)

    Article  Google Scholar 

  24. Németi, I., Dávid, G.: Relativistic computers and the Turing barrier. Appl. Math. Comput. 178, 118–142 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Németi, I., Andréka, H.: Can general relativistic computers break the Turing barrier? In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) Logical Approaches to Computational Barriers, Second Conference on Computability in Europe, CiE 2006, July 2006, Swansea, UK, Proceedings. Lecture Notes in Computer Science, vol. 3988, pp. 398–412. Springer, Berlin Heidelberg (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Stannett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stannett, M., Németi, I. Using Isabelle/HOL to Verify First-Order Relativity Theory. J Autom Reasoning 52, 361–378 (2014). https://doi.org/10.1007/s10817-013-9292-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-013-9292-7

Keywords

CR Subject Classification

Navigation