Skip to main content
Log in

Raman spectra of tetraoxa[8]circulenes. p-dinaphthalenodiphenylenotetrafuran and its tetraalkyl derivatives (DFT study and experiment)

  • Published:
Journal of Applied Spectroscopy Aims and scope

The equilibrium molecular geometry, harmonic vibrational frequencies, and Raman band intensities were calculated by the density functional theory B3LYP method with the 6-31G(d) basis set for tetraoxa[8]circulenes p-dinaphthalenodiphenylenotetrafuran (p-2B2N) and p-dinaphthaleno-2,3,10,11-tetraethyldiphenylenotetrafuran (p-2B2N4R, R = C2H5) whose molecules belong to D2h and D2 point group symmetry. All bands in the measured Raman spectrum of p-dinaphthaleno-2,3,10,11-tetraundecyldiphenylenotetrafuran (p-2B2N4R, R = n-C11H23) were assigned based on quantum-chemical calculations of the frequencies and normal vibration modes of the molecule. A comparison of the calculated vibrational spectra with those from the experiment made it possible to assign reliably all observed bands in the Raman spectrum. Results of quantum-chemical calculations were in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Erdtman and H. E. Hogberg, Chem. Commun., 773–774 (1968).

  2. K. Yu. Chernichenko, V. V. Sumerin, R. V. Shpanchenko, E. S. Balenkova, and V. G. Nenajdenko, Angew. Chem., Int. Ed., 45, No. 44, 7367–7370 (2006).

    Article  Google Scholar 

  3. K. Yu. Chernichenko, E. S. Balenkova, and V. G. Nenajdenko, Mendeleev Commun., 18, No. 4, 171–179 (2008).

    Article  Google Scholar 

  4. C. B. Nielsen, T. Brock-Nannestad, T. K. Reenberg, P. Hammershoj, J. B. Christensen, J. W. Stouwdam, and M. Pittelkow, Chem. Eur. J., 16, No. 44, 13030–13034 (2010).

    Article  Google Scholar 

  5. J. Eskildsen, T. Reenberg, and J. B. Christensen, Eur. J. Org. Chem., 2000, No. 8, 1637–1640 (2000).

    Article  Google Scholar 

  6. T. Brock-Nannestad, C. B. Nielsen, M. Schau-Magnussen, P. Hammershoj, T. K. Reenberg, A. B. Petersen, D. Trpcevski, and M. Pittelkow, Eur. J. Org. Chem., No. 31, 6320–6325 (2011).

  7. A. Dadvand, F. Cicoira, K. Yu. Chernichenko, E. S. Balenkova, R. M. Osuna, F. Rosei, V. G. Nenajdenko, and D. F. Perepichka, Chem. Commun., No. 42, 5354–5356 (2008).

  8. B. F. Minaev, G. V. Baryshnikov, and V. A. Minaeva, Comput. Theor. Chem., 972, No. 1–3, 68–74 (2011).

    Article  Google Scholar 

  9. V. A. Minaeva, B. F. Minaev, G. V. Baryshnikov, H. Agren, and M. Pittelkow, Vib. Spetrosc., 61, 156–166 (2012).

    Article  Google Scholar 

  10. B. O. Minaeva, B. P. Minaev, G. V. Barynishkov, O. M. Romeiko, and M. Pittelkow, Visn. Cherkas. Univ., Ser. Khim. Nauk, 227, No. 14, 39–59 (2012).

    Google Scholar 

  11. M. J. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montgomery, J. Vreven, K. Kudin, J. Burant, J. Millam, S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, R. J. Knox, H. Hratchian, J. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. Stratmann, O. Yazyev, A. Austin, R. Cammi, C. Pomelli, J. Ochterski, P. Ayala, K. Morokuma, G. Voth, P. Salvador, J. Dannenberg, V. Zakrzewski, S. Dapprich, A. Daniels, M. Strain, O. Farkas, D. Malick, A. Rabuck, K. Raghavachari, J. Foresman, J. Ortiz, Q. Cui, A. Baboul, S. Clifford, J. Cioslowski, B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Martin, D. Fox, T. Keith, M. Al-Laham, C. Peng, A. Nanayakkara, M. Challacombe, P. Gill, B. Johnson, W. Chen, M. Wong, C. Gonzalez, and J. Pople, Gaussian 03, Revision C.02, Gaussian Inc., Wallingford CT (2004).

    Google Scholar 

  12. A. P. Scott, J. Phys. Chem., 100, No. 41, 16502–16513 (1996).

    Article  Google Scholar 

  13. P. L. Polavarapu, J. Phys. Chem., 94, 8106–8112 (1990).

    Google Scholar 

  14. G. Keresztury, S. Holly, G. Besenyei, J. Varga, A. Wang, and J. R. Durig, Spectrochim. Acta, 49, 2007–2026 (1993).

    Article  Google Scholar 

  15. S. I. Gorelsky, SWizard Program, University of Ottawa, Ottawa, Canada (2010); http://www.sg-chem.net/

  16. G. Socrates, Infrared and Raman Characteristic Group Frequencies — Tables and Charts, 3rd Ed., J. Wiley & Sons, Chichester (2001), pp. 54, 158–160.

  17. The official web site of the National Institute of Advanced Industrial Science and Technology (AIST), Research Information Database (RIO-DB); http://riodb.ibase.aist.go.jp/riohomee.html

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 79, No. 4, pp. 709–720, September–October, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minaeva, V.A., Minaev, B.F., Baryshnikov, G.V. et al. Raman spectra of tetraoxa[8]circulenes. p-dinaphthalenodiphenylenotetrafuran and its tetraalkyl derivatives (DFT study and experiment). J Appl Spectrosc 79, 695–707 (2012). https://doi.org/10.1007/s10812-012-9659-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-012-9659-2

Keywords

Navigation