Skip to main content
Log in

The influence of ultra-low temperatures on marine microalgal cells

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The development of cryopreservation methods for microalgae opens great prospects for marine biotechnology and aims to establish a bank of cryopreserved cultures. Eight of ten marine microalgae species used in this study (the diatoms, green, red, and golden algae), including five previously untested species, were successfully recovered after freezing to ultra-low temperatures (−196 °C) using penetrating (dimethyl sulfoxide, glycerol, and ethylene glycol) and non-penetrating (trehalose and polyvinylpyrrolidone) cryoprotectants. We found that ethylene glycol in combination with trehalose possessed the most effective cryoprotective activity among the algae cryoprotectants tested. However, the chief factor for the successful preservation of microalgal cells during freeze–thawing was shown to be the cooling rate. Cooling was performed in two ways: step or fast droplet freezing. The droplet freezing described here was effective only for cryopreserving green algae, whereas step freezing was optimal for all other algal species. Three diatoms of the genus Attheya were successfully cryopreserved for the first time, but none of the tested protocols had a positive result for the diatoms belonging to Pseudo-nitzschia. The failure may be explained rather by peculiarities in the cell wall composition (higher content of silica and fewer organic components) than by the specific (long and thin) shape of these cells. The pigment content in all of the studied species tended to decrease after thawing as compared with unfrozen cells and increase significantly during cell recovery. Cryosensitivity of marine algae depended on the differences in natural intrinsic characteristics rather than their taxonomic position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abreu L, Borges L, Marangoni J, Abreu PC (2012) Cryopreservation of some useful microalgae species for biotechnological exploitation. J Appl Phycol 24:1579–1588

    Article  CAS  Google Scholar 

  • Aizdaicher NA (2008) Collection of marine microalgae at the A. V. Zhirmunsky Institute of Marine Biology. Russ J Mar Biol 34:139–142

    Article  Google Scholar 

  • Akarasanon K, Damrongphol P, Poolsanguan W (2004) Long-term cryopreservation of spermatophore of the giant freshwater prawn, Macrobrachium rosenbergii (de Man). Aquac Res 35:1415–1420

    Article  Google Scholar 

  • Baust JM (2002) Molecular mechanisms of cellular demise associated with cryopreservation failure. Cell Preserv Tech 1:17–31

    Article  CAS  Google Scholar 

  • Ben-Amotz A, Avron M (1973) The role of glycerol in the osmotic regulation of the halophilic alga Dunaliella parva. Plant Physiol 51:875–878

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ben-Amotz A, Gilboa A (1980) Cryopreservation of marine unicellular algae. I. A survey of algae with regard to size, culture age, photosynthetic activity and chlorophyll-to-cell ratio. Mar Ecol Prog Ser 2:157–161

    Article  CAS  Google Scholar 

  • Benhra A, Radetski CM, Ferard JF (1997) Cryoalgotox: use of cryopreserved alga in a semistatic microplate test. Environ Toxicol Chem 16:505–508

    Article  CAS  Google Scholar 

  • Benson EE (2008) Cryopreservation of phytodiversity: a critical appraisal of theory practice. Crit Rev Plant Sci 27:141–219

    Article  CAS  Google Scholar 

  • Bhosale P (2004) Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl Microbiol Biotechnol 63:351–361

    Article  PubMed  CAS  Google Scholar 

  • Borowitzka MA (1995) Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol 7:3–15

    Article  CAS  Google Scholar 

  • Borowitzka LJ, Brown A (1974) The salt relations of marine and halophilic species of the unicellular green alga, Dunaliella. Arch Microbiol 96:37–52

    Article  CAS  Google Scholar 

  • Brown MR, McCausland MA, Kowalski K (1998) The nutritional value of four Australian microalgal strains fed to Pacific oyster Crassostrea gigas spat. Aquaculture 165:281–293

    Article  Google Scholar 

  • Cañavate JP, Lubińn LM (1995) Some aspects on the cryopreservation of microalgae used as food for marine species. Aquaculture 136:277–290

    Article  Google Scholar 

  • Crawford RM, Gardner C, Medlin LK (1994) The genus Attheya. I. A description of four new taxa, and the transfer of Gonioceros septentrionalis and G. armatas. Diatomol Res 9:27–51

    Article  Google Scholar 

  • Day JG (1998) Cryoconservation of microalgae and cyanobacteria. Cryo-Letters 1:7–14

    Google Scholar 

  • Day JG, Brand JJ (2005) Cryopreservation methods for maintaining microalgal cultures. In: Andersen RA (ed) Algal culturing techniques. Elsevier, Amsterdam, pp 165–187

    Google Scholar 

  • Day JG, Harding K, Nadarajan J, Benson EE (2008) Cryopreservation: conservation of bio-resources at ultra-low temperatures. In: Walker JM, Rapley R (eds) Molecular biomethods handbook, 2nd edn. Humana, Totowa, pp 917–947

    Chapter  Google Scholar 

  • De Antoni GL, Perez P, Abraham A, Anon MC (1989) Trehalose, a cryoprotectant for Lactobacillus bulgaricus. Cryobiology 26:149–153

    Article  Google Scholar 

  • Declerck S, Angelo-Van Coppenolle MG (2000) Cryopreservation of entrapped monoxenically produced spores of an arbuscular mycorrhizal fungus. New Phytol 148:169–176

    Article  Google Scholar 

  • Diniz-Mendes L, Bernardes E, de Araujo PS, Panek AD, Paschoalin VM (1999) Preservation of frozen yeast cells by trehalose. Biotechnol Bioeng 65:572–578

    Article  PubMed  CAS  Google Scholar 

  • Eidtmann A, Schauz K (1992) Cryopreservation of protoplasts from sporidia of Ustilago maydis. Mycol Res 96:318–320

    Article  CAS  Google Scholar 

  • Farrant J, Walter CA, Lee H, Morris GJ, Clarke KJ (1977) Structural and functional aspects of biological freezing techniques. J Microsc 111:17–34

    Article  PubMed  CAS  Google Scholar 

  • Fenwick C, Day JG (1992) Cryopreservation of Tetraselmis suecica cultured under different nutrients regimes. J Appl Phycol 4:105–109

    Article  Google Scholar 

  • Ford CW, Percival E (1965) The carbohydrates of Phaeodactylum tricornutum. Part I. Preliminary examination of the organism, and characterisation of low molecular weight material and of a glucan. J Chem Soc 1298:7035–7041

    Article  Google Scholar 

  • Geresh S, Adin I, Yarmolinsky E, Karpasas M (2002) Characterization of the extracellular polysaccharide of Porphyridium sp.: molecular weight determination and rheological properties. Carbohydr Polym 50:183–189

    Article  CAS  Google Scholar 

  • Goncharova SN, Sanina NM, Kostetsky EY (2000) Role of lipids in molecular thermoadaptation mechanisms of seagrass Zostera marina. Biochem Soc Trans 28:887–890

    Article  PubMed  CAS  Google Scholar 

  • Gouveia L, Coutinho C, Mendonça E, Batista AP, Sousa I, Bandarra NM, Raymundo A (2008) Functional biscuits with PUFA-ω3 from Isochrysis galbana. J Sci Food Agric 88:891–896

    Article  CAS  Google Scholar 

  • Guillard RL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith W, Chanley M (eds) Culture of marine invertebrate animals. Springer, NY, pp 29–60

    Chapter  Google Scholar 

  • Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  PubMed  CAS  Google Scholar 

  • Hasle GR, Lange CB, Syvertsen EE (1996) A review of Pseudo-nitzschia, with special reference to the Skagerrak, North Atlantic, and adjacent waters. Helgol Meeresun 50:131–175

    Article  Google Scholar 

  • Heaney-Kieras J, Chapman D (1976) Structural studies on the extracellular polysaccharide of the red alga, Porphyridium cruentum. Carbohydr Res 52:169–177

    Article  PubMed  CAS  Google Scholar 

  • Hecky RE, Mopper K, Kilham P, Degens ET (1973) The amino acid and sugar composition of diatom cell-walls. Mar Biol 19:323–331

    Article  CAS  Google Scholar 

  • Hubalek Z (2003) Protectants used in the cryopreservation of microorganisms. Cryobiology 46:205–229

    Article  PubMed  CAS  Google Scholar 

  • Jiménez C, Pick U (1994) Differential stereoisomer compositions of β, β-carotene in thylakoids and in pigment globules in Dunaliella. J Plant Physiol 143:257–263

    Article  Google Scholar 

  • Kabanova YG (1961) Concerning in vitro culturing of marine planktonic diatoms and peridinea algae. Trio IO AN SSSR 47:203–216

    Google Scholar 

  • Kana TM, Geider RJ, Critchley C (1997) Regulation of photosynthetic pigments in micro-algae by multiple environmental factors: a dynamic balance hypothesis. New Phytol 137:629–638

    Article  CAS  Google Scholar 

  • Katayama T, Murata AI, Taguchi S (2011) Responses of pigment composition of the marine diatom Thalassiosira weissflogii to silicate availability during dark survival and recovery. Plankon Benthos Res 6:1–11

    Article  Google Scholar 

  • Kiyosawa K (1993) Permeability of the Chara cell membrane for ethylene glycol, glycerol, meso-erythritol, xylitol and mannitol. Physiol Plant 88:366–371

    Article  CAS  Google Scholar 

  • Kono S, Kuwano K, Ninomiya M, Onishi J, Saga N (1997) Cryopreservation of Enteromorpha intestinalis (Ulvales, Chlorophyta) in liquid nitrogen. Phycologia 36:76–78

    Article  Google Scholar 

  • Kröger N, Poulsen N (2008) Diatoms—from cell wall biogenesis to nanotechnology. Annu Rev Genet 42:83–107

    Article  PubMed  CAS  Google Scholar 

  • Kurokura H, Namba K, Ishikawa T (1990) Lesions of spermatozoa by cryopreservation in oyster Crassostrea gigas. Nippon Suisan Gakkaishi 56:1803–1806

    Article  Google Scholar 

  • Lovelock JE, Bishop MWH (1959) Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature 183:1394–1395

    Article  PubMed  CAS  Google Scholar 

  • Martin-Jézéquel V, Hildebrand M, Brzezinski M (2000) Silicon metabolism in diatoms: implications for growth. J Phycol 36:821–840

    Article  Google Scholar 

  • Masojídek J, Torzillo G, Kopecký J, Koblížek M, Nidiaci L, Komenda J, Lukavská A, Sacchi A (2000) Changes in chlorophyll fluorescence quenching and pigment composition in the green alga Chlorococcum sp. grown under nitrogen deficiency and salinity stress. J Appl Phycol 12:417–426

    Article  Google Scholar 

  • Mazur P (1960) Physical factors implicated in the death of microorganisms at subzero temperatures. Ann NY Acad Sci 85:610–629

    Article  PubMed  CAS  Google Scholar 

  • Mazur P (1970) Cryobiology: the freezing of biological systems. Science 168:939–949

    Article  PubMed  CAS  Google Scholar 

  • Moore RE (1996) Cyclic peptides and depsipeptides from cyanobacteria: a review. J Ind Microbiol 16:134–143

    Article  PubMed  CAS  Google Scholar 

  • Morris GJ (1976) The cryopreservation of Chlorella. 1. Interactions of rate of cooling, protective additive and warming rate. Arch Microbiol 107:57–62

    Article  PubMed  CAS  Google Scholar 

  • Morris GJ (1981) Cryopreservation: an introduction to cryopreservation in culture collections. Institute of Terrestrial Ecology, Cambridge

    Google Scholar 

  • Morris GJ (1986) A cryomicroscopic study of Cylindrocystis brebissonii De Bary and two species of Micrasterias Ralfs (Conjugatophyceae, Chlorophyta) during freezing and thawing. J Exp Bot 37:842–856

    Article  Google Scholar 

  • Nakanishi K, Deuchi K, Kuwano K (2012) Cryopreservation of four valuable strains of microalgae, including viability and characteristics during 15 years of cryostorage. J Appl Phycol 24:1381–1385

    Article  CAS  Google Scholar 

  • Nash T (1966) Chemical constitution and physical properties of compounds able to protect living cells against damage due to freezing and thawing. In: Meryman HT (ed) Cryobiology. Academic, London, pp 179–211

    Google Scholar 

  • Okauchi M, Kawamuru K, Mizukami Y (1997) Nutritive value of Tahiti Isochrysis. Isochrysis sp for larval greasy back shrimp Metapenaeus ensis. Bull Natl Res Inst Aquac (Japan) 26:1–11

    CAS  Google Scholar 

  • Oren A (2005) A hundred years of Dunaliella research: 1905–2005. Saline Syst 1/1:2. doi:10.1186/1746-1448-1-2

    Article  PubMed Central  PubMed  Google Scholar 

  • Polge C, Smith AU, Parkes AS (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:666

    Article  PubMed  CAS  Google Scholar 

  • Ponomarenko LP, Stonik IV, Aizdaicher NA, Orlova TY, Popovskaya GI, Pomazkina GV, Stonik VA (2004) Sterols of marine microalgae Pyramimonas cf. cordata (Prasinophyta), Attheya ussurensis sp. nov. (Bacillariophyta) and a spring diatom bloom from Lake Baikal. Comp Biochem Physiol B 138:65–70

    Article  PubMed  CAS  Google Scholar 

  • Rhodes L, Smith J, Tervit R, Roberts R, Adamson J, Adams S, Decker M (2006) Cryopreservation of economically valuable marine micro-algae in the classes Bacillariophyceae, Chlorophyceae, Cyanophyceae, Dinophyceae, Haptophyceae, Prasinophyceae, and Rhodophyceae. Cryobiology 52:152–156

    Article  PubMed  CAS  Google Scholar 

  • Roberts R (2001) A review of settlement cues for larval abalone (Haliotis sp.). J Shellfish Res 20:571–586

    Google Scholar 

  • Sakurada M, Tsuzuki Y, Morgavi DP, Tomita Y, Onodera R (1995) Simple method for cryopreservation of an anaerobic rumen fungus using ethylene glycol and rumen fluid. FEMS Microbiol Lett 127:171–174

    Article  PubMed  CAS  Google Scholar 

  • Sanina NM, Kostetsky EY, Goncharova SN (2000) Thermotropic behaviour of membrane lipids from brown marine alga Laminaria japonica. Biochem Soc Trans 28:894–897

    Article  PubMed  CAS  Google Scholar 

  • Sarokin DJ, Carpenter EJ (1982) Ultrastructure and taxonomic observations on marine isolates of the genus Nannochloris (Chlorophyceae). Bot Mar 25:483–491

    Article  Google Scholar 

  • Schnepf E, Drebes G (1977) The structure of the frustule of Attheya decora West (Bacillariophyceae, Biddulphiineae) with special reference to the organic compounds. Br Phycol J 12:145–154

    Article  Google Scholar 

  • Searcy-Bernal R, Velez-Espino LA, Anguiano-Beltran C (2001) Effect of biofilm density on grazing and growth rates of Haliotis fulgens post larvae. J Shellfish Res 20:587–591

    Google Scholar 

  • Simione FP Jr, Daggett PM (1977) Recovery of a marine dinoflagellate following controlled and uncontrolled freezing. Cryobiology 14:362–366

    Article  PubMed  Google Scholar 

  • Sournia A (1974) Circadian periodicities in natural populations of marine phytoplankton. Adv Mar Biol 12:325–389

    Article  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  PubMed  CAS  Google Scholar 

  • Taylor R, Fletcher RL (1999) Cryopreservation of eukaryotic algae—a review of methodologies. J Appl Phycol 10:481–501

    Article  Google Scholar 

  • Tesson B, Genet MJ, Fernandez V, Degand S, Rouxhet PG, Martin-Jezequel V (2009) Surface chemical composition of diatoms. ChemBioChem 10:2011–2024

    Article  PubMed  CAS  Google Scholar 

  • Walker T, Purton S, Becker D, Collet C (2005) Microalgae as bioreactors. Plant Cell Rep 24:629–641

    Article  PubMed  CAS  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Wetherbee R (2002) The diatom glasshouse. Science 298:547

    Article  PubMed  CAS  Google Scholar 

  • Youn JY, Hur SB (2009) Cryopreserved marine microalgae grown using different freezing methods. Algae 24:257–265

    Article  Google Scholar 

Download references

Funding

This work was supported by the Far Eastern Branch of Russian Academy of Sciences (grant no. 12-I-P6-07), the Russian Foundation for Basic Research (grant no. 12-04-31974), the Russian Foundation for Basic Research-Far Eastern Federal University (grant no. 12-04-13006-12/13), and Program at the Far Eastern Federal University (grant no. 11 G34.31.0010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Boroda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boroda, A.V., Aizdaicher, N.A. & Odintsova, N.A. The influence of ultra-low temperatures on marine microalgal cells. J Appl Phycol 26, 387–397 (2014). https://doi.org/10.1007/s10811-013-0093-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0093-5

Key words

Navigation