Skip to main content
Log in

Microalgae as natural sources for antioxidative compounds

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Antioxidants are substances that have the ability to reduce free, energized radicals. Thus, they prevent the oxidation of sensitive metabolites like lipids or amino acids and shield them from being destroyed by interrupting auto- or photooxidative chain reactions inside the cell. Antioxidants are also of industrial importance because they can be used as food, drug, or plastics additives. Ubiquinol, the reduced form of coenzyme Q10, is one of the most effective antioxidants in human cells. This paper explores optimization strategies to increase Q10 concentration in the biomass of Porphyridium purpureum, based on the variation of photosynthetic photon flux density. In addition, a cultivation process was performed in the 120-L scale followed by an automized extraction procedure (Accelerated Solvent Extraction®) resulting in an increase of the product recovery by a factor of 14 compared to the standard extraction method, hence reaching a specific coenzyme Q10 concentration of 141 μg g −1dry weight and a volumetric coenzyme Q10 concentration of 1.96 mg L−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abele D (2002) Toxic oxygen: the radical life-giver. Nature 420:27

    Article  PubMed  CAS  Google Scholar 

  • Arad S, Adda M, Cohen E (1985) The potential of production of sulfated polysaccharides from Porphyridium. Plant Soil 89:117–127

    Article  CAS  Google Scholar 

  • Arad SM, Friedman OD, Rotem A (1988) Effect of nitrogen on polysaccharide production in a Porphyridium sp. Appl Environm Microbiol 54:2411–2414

    CAS  Google Scholar 

  • Beal MF (2005) Mitochondria take center stage in aging and neurodegeneration. Ann Neurol 58:495–505

    Article  PubMed  CAS  Google Scholar 

  • Behrens PW, Delente JJ (1991) Microalgae in the pharmaceutical industry. Biol Pharmac Bull 4:54–58

    Google Scholar 

  • Belitz H-D, Grosch W, Schieberle P (2001) Lehrbuch der Lebensmittelchemie. Springer, New York

    Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2003) Biochemie. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Carballo-Cárdenas EC, Tuan PM, Janssen M, Wijffels RH (2003) Vitamin E (α-tocopherol) production by the marine microalgae Dunaliella tertiolecta and Tetraselmis suecica in batch cultivation. Biomol Eng 20:139–147

    Article  PubMed  Google Scholar 

  • Chen B, Huang J, Wang J, Huang L (2008) Ultrasound effects on the antioxidative defense systems of Porphyridium cruentum. Colloid Surface B 61:88–92

    Article  CAS  Google Scholar 

  • Cohen Z (1999) Production of polyunsaturated fatty acids by the microalga Porphyridium cruentum. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis Inc., Philadelphia, pp 1–24

    Google Scholar 

  • Dionex (2006) Accelerated solvent extraction (ASE®) sample preparation techniques for food and animal feed samples. Dionex Application Note: 209

  • Durmaz Y, Monteiro M, Bandarra N, Gökpinar Ş, Işik O (2007) The effect of low temperature on fatty acid composition and tocopherols of the red microalga, Porphyridium cruentum. J Appl Phycol 19:223–227

    Article  CAS  Google Scholar 

  • Ernster L, Forsmark P, Nordenbrand K (1992) The mode of action of lipid-soluble antioxidants in biological membranes: relationship between the effects of ubiquinol and vitamin E as inhibitors of lipid peroxidation in submitochondrial particles. Biofactors 3:241–248

    PubMed  CAS  Google Scholar 

  • Gantt E (1969) Properties and ultrastructure of phycoerythrin from Porphyridium cruentum. Plant Physiol 44:1629–1638

    Article  PubMed  CAS  Google Scholar 

  • Gholipour A-F (2004) Symptomatische Effekte von Coenzym Q10 bei Morbus Parkinson. Dissertation, Ruhr-Universität Bochum, Bochum

  • Guil-Guerrero JL, Belarbi E-H, Rebolloso-Fuentes MM (2000) Eicosapentaenoic and arachidonic acids purification from the red microalga Porphyridium cruentum. Bioseperation 9:299–306

    Article  CAS  Google Scholar 

  • Horvath TL, Diano S, Leranth C, Garcia-Segura LM, Cowley MA, Shanabrough M, Elsworth JD, Sotonyi P, Roth RH, Dietrich EH, Matthews RT, Barnstable CJ, Redmond DEJ (2003) Coenzyme Q induces nigral mitochondrial uncoupling and prevents dopamine cell loss in a primate model of Parkinson's disease. Endocrinology 144:2757–2760

    Article  PubMed  CAS  Google Scholar 

  • Hundal T, Forsmark-Andrée P, Ernster L, Andersson B (1995) Antioxidant activity of reduced plastoquinone in chloroplast thylakoid membranes. Arch Biochem Biophys 324:117–122

    Article  PubMed  CAS  Google Scholar 

  • Jones RF, Speer HL, Kury W (1963) Studies on the growth of the red alga Porphyridium cruentum. Physiol Plant 16:636–643

    Article  CAS  Google Scholar 

  • Klyachko-Gurvich GL, Tsoglin LN, Doucha J, Kopetskii J, Shebalina IB, Semenenko VE (1999) Desaturation of fatty acids as an adaptive response to shifts in light intensity 1. Physiol Plant 107:240–249

    Article  CAS  Google Scholar 

  • Knook DL, Planta RJ (1971) Function of ubiquinone in electron transport from reduced nicotinamide adenine dinucleotide to nitrate and oxygen in Aerobacter aerogenes. J Bacteriol 105:483–488

    PubMed  CAS  Google Scholar 

  • König T (2007) Gewinnung und Charakterisierung antiviraler Wirkstoffe aus aquatischen Mikroorganismen. Dissertation, Universität Erlangen-Nürnberg, Erlangen

  • Kröger A, Klingenberg M (1973) The kinetics of the redox reactions of ubiquinone related to the electron-transport activity in the respiratory chain. Eur J Biochem 34:358–368

    Article  PubMed  Google Scholar 

  • Lenaz G (1985) Coenzyme Q. Wiley, Chichester

    Google Scholar 

  • Lenaz G, Genova ML (2009) Mobility and function of coenzyme Q (ubiquinone) in the mitochondrial respiratory chain. BBA-Bioenergetics 1787:563–573

    Article  PubMed  CAS  Google Scholar 

  • Lenaz G, Faro R, Debernardo S, Jarreta D, Costa A, Genova ML, Parenti Castelii G (1999) Location and mobility of coenzyme Q in lipid bilayers and membranes. Biofactors 9:87–94

    Article  PubMed  CAS  Google Scholar 

  • Naumann I (2009) Sulfoquinovosyldiacylglyceride—antiviral aktive Substanzen. Dissertation, Universität Erlangen-Nürnberg, Erlangen

  • Rodriguez-Garcia I, Guil-Guerrero JL (2008) Evaluation of the antioxidant activity of three microalgal species for use as dietary supplements and in the preservation of foods. Food Chem 108:1023–1026

    Article  CAS  Google Scholar 

  • Schlösser UG (1994) SAG—Sammlung von Algenkulturen at the University of Göttingen: Catalogue of strains 1994. Bot Acta 113–186

  • Smith KM, Matson S, Matson WR, Cormier K, Del Signore SJ, Hagerty SW, Stack EC, Ryu H, Ferrante RJ (2006) Dose ranging and efficacy study of high-dose coenzyme Q10 formulations in Huntington's disease mice. Biochim Biophys Acta 1762:616–626

    Article  PubMed  CAS  Google Scholar 

  • Thepenier C, Gudin C (1985) Studies on optimal conditions for polysaccharide production by Porphyridium cruentum. World J Microbiol 1:257–268

    Article  CAS  Google Scholar 

  • Walter C, Steinau T, Gerbsch N, Buchholz R (2003) Monoseptic cultivation of phototrophic microorganisms-development and scale-up of a photobioreactor system with thermal sterilization. Biomol Eng 20:261–271

    Article  PubMed  CAS  Google Scholar 

  • Wijffels RH (2008) Potential of sponges and microalgae for marine biotechnology. TIBTECH 26:26–31

    Article  CAS  Google Scholar 

  • Xu Z-F, Luo G-H, Wang A-G, Chen Y-Z, Guo J-Y (1999) Effects of strong light and active oxygen on photosynthesis in soybean. Acta Bot Sin 41:862–866

    CAS  Google Scholar 

  • Yamamoto Y, Yamashita S (1997) Plasma ratio of ubiquinol and ubiquinone as a marker of oxidative stress. Mol Aspects Med 18:79–84

    Article  Google Scholar 

  • Yang J-H, Basinger SF, Gross RL, Wu SM (2003) Blue light-induced generation of reactive oxygen species in photoreceptor ellipsoids requires mitochondrial electron transport. Invest Ophthalmol Vis Sci 44:1312–1319

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The financial support for this research work was provided by “Stiftung Industrieforschung” (research project no. S 748).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara C. Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, B.C., Walter, C., Lange, H.A. et al. Microalgae as natural sources for antioxidative compounds. J Appl Phycol 24, 1133–1139 (2012). https://doi.org/10.1007/s10811-011-9743-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-011-9743-7

Keywords

Navigation