Developing a Compressive Failure Theory for Nanocomposites
 A. N. Guz,
 A. A. Rodger,
 I. A. Guz
 … show all 3 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
The paper addresses a compressivefailure theory for polymermatrix nanocomposites in the case where failure onset is due to microbuckling. Two approaches based on the threedimensional linearized theory of stability of deformable bodies are applied to laminated and fibrous nanocomposites. According to the first approach (continuum compressivefailure theory), nanocomposites are modeled by a homogeneous anisotropic medium with effective constants, including microstructural parameters. The second approach uses the piecewisehomogeneous model, threedimensional relations for fibers (CNT) and matrix, and continuity conditions at the fibermatrix interface. The compressivefailure theory is used to solve specific problems for laminated and fibrous nanocomposites. Some approximate failure theories based on the one and twodimensional applied theories of stability of rods, plates, and shells are analyzed
 G. A. Van Fo Fy, Theory of Reinforced Materials [in Russian], Naukova Dumka, Kiev (1971).
 A. N. Guz, “Determination of theoretical ultimate compressive strength for reinforced materials,” Dokl. AN USSR, Ser. A, No. 3, 236–238 (1969).
 A. N. Guz, “Developing a stability theory for unidirectional fibrous materials,” Prikl. Mekh., 5, No.2, 62–70 (1969).
 A. N. Guz, Stability of ThreeDimensional Deformable Bodies [in Russian], Naukova Dumka, Kiev (1971).
 A. N. Guz, “Brittle fracture criteria for compressed materials with imperfections,” Dokl. AN SSSR, 285, No.4, 828–831 (1985).
 A. N. Guz, Fundamentals of the ThreeDimensional Theory of Stability of Deformable Bodies [in Russian], Vyshcha Shkola, Kiev (1986).
 A. N. Guz, Fracture Mechanics of Compressed Composites [in Russian], Naukova Dumka, Kiev (1990).
 A. N. Guz, “Description and study of some nonclassical problems of fracture mechanics and related mechanisms,” Int. Appl. Mech., 36, No.12, 1537–1564 (2000).
 I. A. Guz, “Stability of a composite compressed along an interfacial crack,” Dokl. AN SSSR, 325, No.3, 455–458 (1992).
 I. A. Guz, “Stability of a composite compressed along two interfacial macrocracks,” Dokl. AN SSSR, 328, No.4, 437–439 (1993).
 I. A. Guz, “Investigation of the stability of a composite in compression along two parallel structural cracks at the layer interfaces,” Int. Appl. Mech., 30, No.11, 841–847 (1994).
 I. A. Guz, “Problems of the stability of composite materials in compression along interlaminar cracks: Periodic system of parallel macrocracks,” Int. Appl. Mech., 31, No.7, 551–557 (1995).
 H. Liebowitz (ed.), Fracture: An Advanced Treatise, Vols. 1–7, Acad. Press, New YorkLondon (1968–1972).
 B. W. Rosen, “Mechanics of composite strengthening,” in: Fiber Composite Materials, American Society of Metals, Metals Park, Ohio (1965), pp. 37–75.
 G. P. Cherepanov, Fracture Mechanics of Composite Materials [in Russian], Nauka, Moscow (1983).
 C. F. Cornwell and L. T. Wille, “Elastic properties of singlewalled carbon nanotubes in compression, ” Solid State Commun., 101, 555–558 (1997).
 N. F. Dow and I. J. Gruntfest, “Determination of most needed potentially possible improvements in materials for ballistic and space vehicles,” General Electric Co., Space Sci. Lab., TISR 60 SD 389, June (1960).
 C. Goze, L. Vaccarini, L. Henrard, P. Bernier, E. Hernandez, and A. Rubio, “Elastic and mechanical properties of carbon nanotubes,” Synth. Met., 103, 2500–2501 (1999).
 A. N. Guz, Fundamentals of the ThreeDimensional Theory of Stability of Deformable Bodies, SpringerVerlag, BerlinHeidelbergNew York (1999).
 A. N. Guz, “On one twolevel model in the mesomechanics of compression fracture of cracked composites, ” Int. Appl. Mech., 39, No,3, 274–285 (2003).
 A. N. Guz and I. A. Guz, “Analytical solution of stability problem for two composite halfplanes compressed along interfacial cracks,” Composites, Part B, 31, No.5, 403–418 (2000).
 A. N. Guz and I. A. Guz, “Mixed plane problems of linearized mechanics of solids: Exact solutions, ” Int. Appl. Mech., 40, No.1, 1–29 (2004).
 A. N. Guz and J. J. Rushchitsky, “Nanomaterials: On mechanics of nanomaterials,” Int. Appl. Mech., 39, No.11, 1264–1298 (2003).
 I. A. Guz, “Computeraided investigations of composites with various interlaminar cracks,” ZAMM, 76,Suppl. No. 5, 189–190 (1996).
 T. Halicioglu, “Stress calculations for carbon nanotubes,” Thin Solid Films, 312, 11–14 (1998).
 E. Hermandez, C. Goze, P. Bernier, and A. Rubio, “Elastic properties of C and B_{x}C_{y}N_{z} composite nanotubes,” Phys. Rev. Lett., 80, 4502–4505 (1998).
 E. Hermandez, C. Goze, P. Bernier, and A. Rubio, “Elastic properties of singlewall nanotubes,” Appl. Phys., A68, 287–292 (1999).
 A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. Treacy, “Young’s modulus of singlewalled nanotubes,” Phys. Rev., B58, 14013–14019 (1998).
 G. V. Lier, C. V. Alsenoy, V. V. Doran, and P. Geerlings, “Ab initio study of the elastic properties of singlewalled carbon nanotubes and graphene,” Chem. Phys. Lett., 326, 181–185 (2000).
 K. M. Liew, X. Q. He, and C. H. Wong, “On the study of elastic and plastic properties of multiwalled carbon nanotubes under axial tension using molecular dynamics simulation,” Acta Mater., 52, 2521–2527 (2004).
 O. Lourie, D. M. Cox, and H. D. Wagner, “Buckling and collapse of embedded carbon nanotubes,” Phys. Rev. Lett., 81, No.8, 1638–1641 (1998).
 O. Lourie and H. D. Wagner, “Evaluation of Young’s modulus of carbon nanotubes by microRaman spectroscopy,” J. Mater. Res., 13, 2418–2422 (1998).
 J. P. Lu, “Elastic properties of carbon nanotubes and nanoropes,” Phys. Rev. Lett., 79, 1297–1300 (1997).
 J. M. Molina, S. S. Savinsky, and N. V. Khokhriakov, “A tightbinding model for calculation of structures and properties of graphitic nanotubes,” J. Chem. Phys., 104, 4652–4556 (1996).
 J. Muster, M. Burghard, S. Roth, G. S. Duesberg, E. Hemander, and A. Rubio, “Scanning force microscopy characterization of individual carbon nanotubes on electrode arrays,” J. Vac. Sci. Technol., B16, 2796–2801 (1998).
 G. Overney, W. Zhong, and D. Tomanek, “Structural rigidity and lowfrequency vibrational models of long carbon tubules,” Z. Phys., D: Atoms Mol. Clusters, 27, 93–96 (1993).
 Z. W. Pan, S. S. Xie, L. Lu, B. H. Chang, L. F. Sun, W. Y. Zhou, and G. Wang, “Tensile test of ropes of very long aligned multiwall carbon nanotubes,” Appl. Phys. Lett., 74, 3152–3154 (1999).
 A. Pantano, D. M. Parks, and M. C. Boyce, “Mechanics of deformation of singleand multiwall carbon nanotubes,” J. Mech. Phys. Solids, 52, 789–821 (2004).
 V. N. Popov, V. E. Van Doren, and M. Balkanski, “Elastic properties of singlewalled carbon nanotubes,” Phys. Rev., B61, 3078–3084 (2000).
 Y. I. Prylutskyy, S. S. Durov, O. V. Ogloblya, E. V. Buraneva, and P. Scharff, “Molecular dynamics simulations of mechanical, vibrational and electronic properties of carbon nanotubes,” Comput. Mater. Sci., 17, 352–355 (2000).
 D. Qian, G. J. Wagner, W. K. Liu, M. F. Yu, and R. S. Ruoff, “Mechanics of carbon nanotubes,” Appl. Mech. Rev., 55, 495–530 (2002).
 D. H. Robertson, D. W. Brenner, and J. W. Mintmire, “Energetics and nanoscale graphitic tubules,” Phys. Rev., B45, 12592–12595 (1992).
 J. P. Salventat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, and A. J. Kulik, “Elastic and shear moduli of singlewalled carbon nanotube ropes,” Phys. Rev. Lett., 82, 944–947 (1999).
 D. SanchezPortal, E. Artacho, J. M. Soler, A. Rubio, and P. Ordejon, “Ab initio structural, elastic and vibrational properties of carbon nanotubes,” Phys. Rev., B59, 12678–12688 (1999).
 H. Schuerch, Boron Filament Composite Materials for Space Structures, Pt. 1: Compressive Strength of Boron Metal Composite, Rep. No. ARCR168, Astro Research Corp., Santa Barbara (Ca) (1964).
 H. Schuerch, “Prediction of compressive strength in uniaxial Boron fibermetal composite materials,” AIAA J., 4, No.1, 102–106 (1966).
 D. Srivastava, Ch. Wei, and K. Cho, “Nanomechanics of carbon nanotubes and composites,” Appl. Mech. Rev., 56, 215–229 (2003).
 T. W. Tombler, C. Zhou, L. Alezseyev, J. Eong, H. L. Dai, C. S. Jaganthi, M. Tang, and S. Y. Wu, “ Reversible electromechanical characterictics of carbon nanotubes under localprobe manipulation,” Nature, 405, 769–772 (2000).
 M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, “Exceptionally high Young’s modulus observed for individual carbon nanotubes,” Nature, 381, 678–680 (1996).
 L. Vaccarini, C. Goze, L. Henrard, E. Hermandez, P. Bernier, and A. Rubio, “Mechanical and electronic properties of carbon and boronnitride nanotubes,” Carbon, 38, 1681–1690 (2000).
 E. W. Wong, P. E. Sheehan, and C. M. Lieber, “Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes,” Science, 277, 1971–1975 (1997).
 B. L. Yakobson, C. J. Brabec, and J. Bernhole, “Nanomechanics of carbon tubes: instabilities beyond linear response,” Phys. Rev. Lett., 76, 2511–2514 (1996).
 M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile,” Science, 287, 454–458 (2000).
 P. Zhang, H. Jiang, Y. Huang, P. H. Geubelle, and K. C. Hwang, “An atomisticbased continuum theory for carbon nanotubes: analysis of fracture nucleation,” J. Mech. Phys. Solids, 52, 977–998 (2004).
 G. Zhou, W. Duan, and B. Gu, “Firstprinciples study on morphology and mechanical properties of singlewalled carbon nanotubes,” Chem. Phys. Lett., 333, 344–349 (2001).
 Title
 Developing a Compressive Failure Theory for Nanocomposites
 Journal

International Applied Mechanics
Volume 41, Issue 3 , pp 233255
 Cover Date
 20050301
 DOI
 10.1007/s1077800500819
 Print ISSN
 10637095
 Online ISSN
 15738582
 Publisher
 Kluwer Academic PublishersConsultants Bureau
 Additional Links
 Topics
 Keywords

 nanocomposites
 CNT fiber
 polymer matrix
 compressive failure
 microbuckling
 threedimensional linearized theory of stability of deformable bodies
 Industry Sectors
 Authors

 A. N. Guz ^{(1)}
 A. A. Rodger ^{(2)}
 I. A. Guz ^{(2)}
 Author Affiliations

 1. S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev, Ukraine
 2. University of Aberdeen, Scotland