1.

G. A. Van Fo Fy, *Theory of Reinforced Materials* [in Russian], Naukova Dumka, Kiev (1971).

2.

A. N. Guz, “Determination of theoretical ultimate compressive strength for reinforced materials,” *Dokl. AN USSR, Ser. A*, No. 3, 236–238 (1969).

3.

A. N. Guz, “Developing a stability theory for unidirectional fibrous materials,” *Prikl. Mekh.*, **5**, No.2, 62–70 (1969).

4.

A. N. Guz, *Stability of Three-Dimensional Deformable Bodies* [in Russian], Naukova Dumka, Kiev (1971).

5.

A. N. Guz, “Brittle fracture criteria for compressed materials with imperfections,” *Dokl. AN SSSR*, **285**, No.4, 828–831 (1985).

6.

A. N. Guz, *Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies* [in Russian], Vyshcha Shkola, Kiev (1986).

7.

A. N. Guz, *Fracture Mechanics of Compressed Composites* [in Russian], Naukova Dumka, Kiev (1990).

8.

A. N. Guz, “Description and study of some nonclassical problems of fracture mechanics and related mechanisms,” *Int. Appl. Mech.*, **36**, No.12, 1537–1564 (2000).

9.

I. A. Guz, “Stability of a composite compressed along an interfacial crack,” *Dokl. AN SSSR*, **325**, No.3, 455–458 (1992).

10.

I. A. Guz, “Stability of a composite compressed along two interfacial macrocracks,” *Dokl. AN SSSR*, **328**, No.4, 437–439 (1993).

11.

I. A. Guz, “Investigation of the stability of a composite in compression along two parallel structural cracks at the layer interfaces,” *Int. Appl. Mech.*, **30**, No.11, 841–847 (1994).

12.

I. A. Guz, “Problems of the stability of composite materials in compression along interlaminar cracks: Periodic system of parallel macrocracks,” *Int. Appl. Mech.*, **31**, No.7, 551–557 (1995).

13.

H. Liebowitz (ed.), *Fracture: An Advanced Treatise*, Vols. 1–7, Acad. Press, New York-London (1968–1972).

14.

B. W. Rosen, “Mechanics of composite strengthening,” in: *Fiber Composite Materials*, American Society of Metals, Metals Park, Ohio (1965), pp. 37–75.

15.

G. P. Cherepanov, *Fracture Mechanics of Composite Materials* [in Russian], Nauka, Moscow (1983).

16.

C. F. Cornwell and L. T. Wille, “Elastic properties of single-walled carbon nanotubes in compression, ” *Solid State Commun.*, **101**, 555–558 (1997).

17.

N. F. Dow and I. J. Gruntfest, “Determination of most needed potentially possible improvements in materials for ballistic and space vehicles,” *General Electric Co., Space Sci. Lab.*, TISR 60 SD 389, June (1960).

18.

C. Goze, L. Vaccarini, L. Henrard, P. Bernier, E. Hernandez, and A. Rubio, “Elastic and mechanical properties of carbon nanotubes,” *Synth. Met.*, **103**, 2500–2501 (1999).

19.

A. N. Guz, *Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies*, Springer-Verlag, Berlin-Heidelberg-New York (1999).

20.

A. N. Guz, “On one two-level model in the mesomechanics of compression fracture of cracked composites, ” *Int. Appl. Mech.*, **39**, No,3, 274–285 (2003).

21.

A. N. Guz and I. A. Guz, “Analytical solution of stability problem for two composite half-planes compressed along interfacial cracks,” *Composites, Part B*, **31**, No.5, 403–418 (2000).

22.

A. N. Guz and I. A. Guz, “Mixed plane problems of linearized mechanics of solids: Exact solutions, ” *Int. Appl. Mech.*, **40**, No.1, 1–29 (2004).

23.

A. N. Guz and J. J. Rushchitsky, “Nanomaterials: On mechanics of nanomaterials,” *Int. Appl. Mech.*, **39**, No.11, 1264–1298 (2003).

24.

I. A. Guz, “Computer-aided investigations of composites with various interlaminar cracks,” *ZAMM*, **76**,Suppl. No. 5, 189–190 (1996).

25.

T. Halicioglu, “Stress calculations for carbon nanotubes,” *Thin Solid Films*, **312**, 11–14 (1998).

26.

E. Hermandez, C. Goze, P. Bernier, and A. Rubio, “Elastic properties of C and B_{x}C_{y}N_{z} composite nanotubes,” *Phys. Rev. Lett.*, **80**, 4502–4505 (1998).

27.

E. Hermandez, C. Goze, P. Bernier, and A. Rubio, “Elastic properties of single-wall nanotubes,” *Appl. Phys.*, **A68**, 287–292 (1999).

28.

A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. Treacy, “Young’s modulus of single-walled nanotubes,” *Phys. Rev.*, **B58**, 14013–14019 (1998).

29.

G. V. Lier, C. V. Alsenoy, V. V. Doran, and P. Geerlings, “Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene,” *Chem. Phys. Lett.*, **326**, 181–185 (2000).

30.

K. M. Liew, X. Q. He, and C. H. Wong, “On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation,” *Acta Mater.*, **52**, 2521–2527 (2004).

31.

O. Lourie, D. M. Cox, and H. D. Wagner, “Buckling and collapse of embedded carbon nanotubes,” *Phys. Rev. Lett.*, **81**, No.8, 1638–1641 (1998).

32.

O. Lourie and H. D. Wagner, “Evaluation of Young’s modulus of carbon nanotubes by micro-Raman spectroscopy,” *J. Mater. Res.*, **13**, 2418–2422 (1998).

33.

J. P. Lu, “Elastic properties of carbon nanotubes and nanoropes,” *Phys. Rev. Lett.*, **79**, 1297–1300 (1997).

34.

J. M. Molina, S. S. Savinsky, and N. V. Khokhriakov, “A tight-binding model for calculation of structures and properties of graphitic nanotubes,” *J. Chem. Phys.*, **104**, 4652–4556 (1996).

35.

J. Muster, M. Burghard, S. Roth, G. S. Duesberg, E. Hemander, and A. Rubio, “Scanning force microscopy characterization of individual carbon nanotubes on electrode arrays,” *J. Vac. Sci. Technol.*, **B16**, 2796–2801 (1998).

36.

G. Overney, W. Zhong, and D. Tomanek, “Structural rigidity and low-frequency vibrational models of long carbon tubules,” *Z. Phys., D: Atoms Mol. Clusters*, **27**, 93–96 (1993).

37.

Z. W. Pan, S. S. Xie, L. Lu, B. H. Chang, L. F. Sun, W. Y. Zhou, and G. Wang, “Tensile test of ropes of very long aligned multiwall carbon nanotubes,” *Appl. Phys. Lett.*, **74**, 3152–3154 (1999).

38.

A. Pantano, D. M. Parks, and M. C. Boyce, “Mechanics of deformation of single-and multi-wall carbon nanotubes,” *J. Mech. Phys. Solids*, **52**, 789–821 (2004).

39.

V. N. Popov, V. E. Van Doren, and M. Balkanski, “Elastic properties of single-walled carbon nanotubes,” *Phys. Rev.*, **B61**, 3078–3084 (2000).

40.

Y. I. Prylutskyy, S. S. Durov, O. V. Ogloblya, E. V. Buraneva, and P. Scharff, “Molecular dynamics simulations of mechanical, vibrational and electronic properties of carbon nanotubes,” *Comput. Mater. Sci.*, **17**, 352–355 (2000).

41.

D. Qian, G. J. Wagner, W. K. Liu, M. F. Yu, and R. S. Ruoff, “Mechanics of carbon nanotubes,” *Appl. Mech. Rev.*, **55**, 495–530 (2002).

42.

D. H. Robertson, D. W. Brenner, and J. W. Mintmire, “Energetics and nanoscale graphitic tubules,” *Phys. Rev.*, **B45**, 12592–12595 (1992).

43.

J. P. Salventat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, and A. J. Kulik, “Elastic and shear moduli of single-walled carbon nanotube ropes,” *Phys. Rev. Lett.*, **82**, 944–947 (1999).

44.

D. Sanchez-Portal, E. Artacho, J. M. Soler, A. Rubio, and P. Ordejon, “Ab initio structural, elastic and vibrational properties of carbon nanotubes,” *Phys. Rev.*, **B59**, 12678–12688 (1999).

45.

H. Schuerch, *Boron Filament Composite Materials for Space Structures, Pt. 1: Compressive Strength of Boron Metal Composite*, Rep. No. ARC-R-168, Astro Research Corp., Santa Barbara (Ca) (1964).

46.

H. Schuerch, “Prediction of compressive strength in uniaxial Boron fibermetal composite materials,” *AIAA J.*, **4**, No.1, 102–106 (1966).

47.

D. Srivastava, Ch. Wei, and K. Cho, “Nanomechanics of carbon nanotubes and composites,” *Appl. Mech. Rev.*, **56**, 215–229 (2003).

48.

T. W. Tombler, C. Zhou, L. Alezseyev, J. Eong, H. L. Dai, C. S. Jaganthi, M. Tang, and S. Y. Wu, “ Reversible electromechanical characterictics of carbon nanotubes under local-probe manipulation,” *Nature*, **405**, 769–772 (2000).

49.

M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, “Exceptionally high Young’s modulus observed for individual carbon nanotubes,” *Nature*, **381**, 678–680 (1996).

50.

L. Vaccarini, C. Goze, L. Henrard, E. Hermandez, P. Bernier, and A. Rubio, “Mechanical and electronic properties of carbon and boron-nitride nanotubes,” *Carbon*, **38**, 1681–1690 (2000).

51.

E. W. Wong, P. E. Sheehan, and C. M. Lieber, “Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes,” *Science*, **277**, 1971–1975 (1997).

52.

B. L. Yakobson, C. J. Brabec, and J. Bernhole, “Nanomechanics of carbon tubes: instabilities beyond linear response,” *Phys. Rev. Lett.*, **76**, 2511–2514 (1996).

53.

M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile,” *Science*, **287**, 454–458 (2000).

54.

P. Zhang, H. Jiang, Y. Huang, P. H. Geubelle, and K. C. Hwang, “An atomistic-based continuum theory for carbon nanotubes: analysis of fracture nucleation,” *J. Mech. Phys. Solids*, **52**, 977–998 (2004).

55.

G. Zhou, W. Duan, and B. Gu, “First-principles study on morphology and mechanical properties of single-walled carbon nanotubes,” *Chem. Phys. Lett.*, **333**, 344–349 (2001).