Skip to main content
Log in

A Class of Super Dense Stars Models Using Charged Analogues of Hajj-Boutros Type Relativistic Fluid Solutions

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We present a spherically symmetric solution of the general relativistic field equations in isotropic coordinates for perfect charged fluid, compatible with a super dense star modeling. The solution is well behaved for all the values of Schwarzschild parameter u lying in the range 0 < u < 0.1727 for the maximum value of charge parameter K = 0.08163. The maximum mass of the fluid distribution is calculated by using stellar surface density as ρ b = 4.6888×1014g cm−3. Corresponding to K = 0.08 and u max = 0.1732, the resulting well behaved solution has a maximum mass M = 0.9324M and radius R = 8.00 and by assuming ρ b = 2×1014g cm−3 the solution results a stellar configuration with maximum mass M = 1.43M and radius R b = 12.25 km. The maximum mass is found increasing with increasing K up to 0.08. The well behaved class of relativistic stellar models obtained in this work might has astrophysical significance in the study of internal structure of compact star such as neutron star or self-bound strange quark star like Her X-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ivanov, B.V.: Phys. Rev. D 65(104001) (2002). doi:10.1103/PhysRevD.65.104001

    Google Scholar 

  2. Bonnor, W.B.: Mon. Not. R. Astron. Soc. 137, 239 (1965)

    Article  ADS  Google Scholar 

  3. Delgaty, M.S.R., Lake, K.: Comput. Phys. Commun. 115(395) (1998). doi:10.1016/S0010-4655(98)00130-1

    MathSciNet  MATH  Google Scholar 

  4. Stephani, H., Kramer, D., Maccallum, M., Hoenselaers, C., Helrt, E., 2nd edition Exact Solutions of Einstein’s Field Equations. Cambridge Monographs on Mathematical Physics. Cambridge (2003)

  5. Oppenheimer, J.R., Volkoff, G.M.: Phys. Rev. 55(374) (1939). doi:10.1103/PhysRev.55.374

    Google Scholar 

  6. Tolman, R.C.: Phys. Rev. 55(364) (1939). doi:10.1103/PhysRev.55.364

    Google Scholar 

  7. Buchdahl, H.A.: Astrophys. J. 147(310) (1967). doi:10.1086/149001

    Google Scholar 

  8. Wyman, M.: Phys. Rev. 75(1930) (1949). doi:10.1103/PhysRev.75.1930

    MathSciNet  MATH  Google Scholar 

  9. Buchdahl, H.A.: Astrophys. J. 140(1512) (1964). doi:10.1086/148055

    MathSciNet  MATH  Google Scholar 

  10. Mehra, A.L.: J. Aust. Math. Soc. 6(153) (1966). doi:10.1017/S1446788700004730

    Google Scholar 

  11. Leibovitz, C.: Phys. Rev. D 185(1664) (1969). doi:10.1103/PhysRev.185.1664

    MathSciNet  Google Scholar 

  12. Heintzmann, H.: Z. Phys. 228(489) (1969). doi:10.1007/BF01558346

    MathSciNet  Google Scholar 

  13. Adler, R.J.: J. Math. Phys. 15(727) (1974). doi:10.1063/1.1666717

    Google Scholar 

  14. Adams, R.C., Cohen, J.M.: Astrophys. J. 198(507) (1975). doi:10.1086/153627

    Google Scholar 

  15. Kuchowicz, B.: Astrophys. Space Sci. 33(L13) (1975). doi:10.1007/BF00646028

    MATH  Google Scholar 

  16. Vaidya, P.C., Tikekar, R.J.: Astrophys. Astron. 3(325) (1982). doi:10.1007/BF00755998

    Google Scholar 

  17. Durgapal, M.C.: J. Phys. A, Math. Gen. 15(2637) (1982). doi:10.1088/0305-4470/15/8/039

    Google Scholar 

  18. Durgapal, M.C., Bannerji, R.: Phys. Rev. D 27(328) (1983). doi:10.1103/PhysRevD.27.328

    Google Scholar 

  19. Durgapal, M.C., Fuloria, R.S. Gen. Relativ. Gravit. 17(671) (1985). doi:10.1007/BF00763028

    MathSciNet  Google Scholar 

  20. Tikekar, R.: J. Math. Phys. 31(2454) (1990). doi:10.1063/1.528851

    MathSciNet  MATH  Google Scholar 

  21. Pant, D.N., Pant, N.: J. Math. Phys. 34(2440) (1993). doi:10.1063/1.530129

    MathSciNet  Google Scholar 

  22. Pant, D.N.: Astrophys. Space Sci. 215(37) (1994). doi:10.1007/BF00627463

    MathSciNet  Google Scholar 

  23. Pant, N.: Astrophys. Space Sci. 240(187) (1996). doi:10.1007/BF00639583

    Google Scholar 

  24. Tikekar, R., Jotania, K.: Int. J. Mod. Phys. D 14(1037) (2005). doi:10.1142/S021827180500722X

    MATH  Google Scholar 

  25. Tikekar, R., Thomas, V.O. Pramana J. Phys. 50(95) (1998)

  26. Sharma et al: Int. J. Mod. Phys. D 15(405) (2006). doi:10.1142/S0218271806008012

  27. Jotania, K., Tikekar, R.: Int. J. Mod. Phys. D 15(1175) (2006). doi:10.1142/S021827180600884X

    Google Scholar 

  28. Takisa, P.M., Maharaj, S.D.: Gen. Relativ. Gravit. 45(1951) (2013). doi:10.1007/s10714-013-1570-5

    MathSciNet  Google Scholar 

  29. Nariai, H.: Sci. Rep. Tohoku University, Ser. 1 XXXIV, 160 (1950). Republished in. Gen. Rel. Gravit. 31(951) (1999). doi:10.1023/A:1026698508110

    Google Scholar 

  30. Goldman, S.P.: Astrophys. J. 226(1079) (1978). doi:10.1086/156684

    Google Scholar 

  31. Knutsen, H.: Gen. Relativ. Gravit. 23(843) (1991). doi:10.1007/BF00755998

    MathSciNet  Google Scholar 

  32. Kuchowicz, B.: Phys. Lett. A 35(223) (1971). doi:10.1016/0375-9601(71)90350-1

    MATH  Google Scholar 

  33. Kuchowicz, B.: Acta Phys. Pol. B 2(657) (1971). doi:10.1016/0375-9601(71)90350-1

    MATH  Google Scholar 

  34. Kuchowicz, B.: Phys. Lett. A 38(369) (1972). doi:10.1016/0375-9601(72)90164-8

    Google Scholar 

  35. Kuchowicz, B. Acta Phys. Pol. B 3, 209 (1972)

    ADS  Google Scholar 

  36. Kuchowicz, B. Acta Phys. Pol. B 4, 415 (1973)

    Google Scholar 

  37. Hajj-Boutros, J.: J. Math. Phys. 27(1363) (1986). doi:10.1063/1.527091

    Google Scholar 

  38. Rahman, S., Visser, M.: Class. Quantum Gravity 19(935) (2002). doi:10.1088/0264-9381/19/5/307

    MathSciNet  Google Scholar 

  39. Lake, K.: Phys. Rev. D 67(104015) (2003). doi:10.1103/PhysRevD.67.104015

    MATH  Google Scholar 

  40. Mak, M.K., Harko, T.: Pramana J. Phys. 65(185) (2005). doi:10.1007/BF02898610

    Google Scholar 

  41. John, A.J., Maharaj, S.D.: Nuovo Cimento B 121(27) (2006). doi:10.1393/ncb/i2005-10179-y

    Google Scholar 

  42. Pant, N., Mehta, R.N., Pant, M.J.: Astrophys. Space Sci. 330(353) (2010). doi:10.1007/s10509-010-0383-1

    Google Scholar 

  43. Pant, N., Fuloria, P., Pradhan, N.: Int. J. Theor. Phys. 53(993) (2014). doi:10.1007/s10773-013-1892-9

    Google Scholar 

  44. Pant, N., Fuloria, P., Tewari, B.C.: Astrophys. Space Sci. 340(407) (2012). doi:10.1007/s10509-012-1068-8

    Google Scholar 

  45. Pant, N, Pradhan, N: Astrophys. Space Sci. 352(143) (2014). doi:10.1007/s10509-014-1905-z

    Google Scholar 

  46. Das, B., et al: Int. J. Mod. Phys. D 20(1675) (2011). doi:10.1142/S0218271811019724

    Google Scholar 

  47. Ivanov, B.V.: Gen. Relativ. Gravit. 44(1835) (2012). doi:10.1007/s10714-012-1370-3

    Google Scholar 

  48. Murad, H.M., Pant, N.: Astrophys. Space Sci. 350(349) (2014). doi:10.1007/s10509-013-1713-x

    Google Scholar 

  49. Canuto, V., Lodenquai, J.: Phys. Rev. C 12(2033) (1975). doi:10.1103/PhysRevC.12.2033

    Google Scholar 

  50. Brecher, K., Caporaso, G. Nature 259(377) (1976). doi:10.1038/259377a0

    Google Scholar 

  51. Zdunik, J.L.: Astron. Astrophys. 359, 311 (2000)

    ADS  Google Scholar 

  52. Fatema, S., Murad, M.H.: Int. J. Theor. Phys. 52(2508) (2013). doi:10.1007/s10773-013-1538-y

    MathSciNet  Google Scholar 

  53. Bonnor, W.B., Vickers, P.A.: Gen. Relativ. Gravit. 13(29) (1981). doi:10.1007/BF00766295

    Google Scholar 

Download references

Acknowledgments

The first two authors are grateful to Major Gen. Ashok Ambre, SM, the Deputy Commandant, NDA, India, for his motivation. And the third author is greatly indebted to his wife Saba Fatema, Department of Natural Sciences, Daffodil International University, Dhaka, Bangladesh, for her inspiration, continuous support and help in the preparation of LATEX source files of the manuscript.

Authors also express their sincere gratitude to the esteemed reviewer(s) for rigorous review, constructive comments and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Pant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pant, N., Pradhan, N. & Murad, M.H. A Class of Super Dense Stars Models Using Charged Analogues of Hajj-Boutros Type Relativistic Fluid Solutions. Int J Theor Phys 53, 3958–3969 (2014). https://doi.org/10.1007/s10773-014-2147-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2147-0

Keywords

Navigation