Skip to main content
Log in

An Exact Family of Einstein–Maxwell Wyman–Adler Solution in General Relativity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

This paper presents a family of two-parametric interior solutions of Einstein–Maxwell field equations in general relativity for a static spherically symmetric distribution of a charged perfect fluid with particular choice of charge distribution and the metric component g 00. This family gives us wide range of parameters, n and K, for which the solutions are regular and acceptable on physical grounds and hence suitable for modeling of charged compact star. The maximum allowable mass and corresponding radius, for this family of solutions with the particular form of charge distribution, is determined to be 2.48M and 10.56 km respectively by assuming the stellar “surface” density equal to strange (quark) matter density at zero pressure. It is hoped that our investigation may be of some importance in connection with the study of internal structure of electrically charged strange (quark) star.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bekenstein, J.D.: Hydrostatic equilibrium and gravitational collapse of relativistic charged fluid balls. Phys. Rev. D 4, 2185–2190 (1971). doi:10.1103/PhysRevD.4.2185

    ADS  Google Scholar 

  2. Nduka, A.: Charged fluid sphere in general relativity. Gen. Relativ. Gravit. 7, 493–499 (1976). doi:10.1007/BF00766408

    ADS  Google Scholar 

  3. Nduka, A.: Static solutions of Einstein’s field equations for charged spheres of fluid. Acta Phys. Pol. B 9, 569–571 (1978)

    Google Scholar 

  4. Mehra, A.L., Bohra, B.L.: A solution for a charged sphere in general relativity. Gen. Relativ. Gravit. 11, 333–336 (1979). doi:10.1007/BF00759275

    ADS  MATH  Google Scholar 

  5. Patel, L.K., Tikekar, R., Sabu, M.C.: Exact interior solutions for charged fluid spheres. Gen. Relativ. Gravit. 29, 489–497 (1997). doi:10.1023/A:1018886816863

    ADS  MATH  MathSciNet  Google Scholar 

  6. Ray, S., et al.: Electrically charged compact stars and formation of charged black holes. Phys. Rev. D 68, 084004 (2003). doi:10.1103/PhysRevD.68.084004

    ADS  Google Scholar 

  7. Malheiro, M., et al.: Of charged stars and charged black holes. Int. J. Mod. Phys. D 13, 1375–1379 (2004). doi:10.1142/S0218271804005560

    ADS  MATH  Google Scholar 

  8. Ghezzi, C.R.: Relativistic structure, stability, and gravitational collapse of charged neutron stars. Phys. Rev. D 72, 104017 (2005). doi:10.1103/PhysRevD.72.104017

    ADS  Google Scholar 

  9. Gupta, Y.K., Maurya, S.K.: A class of regular and well behaved relativistic super-dense star models. Astrophys. Space Sci. 332, 155–162 (2011). doi:10.1007/s10509-010-0503-y

    ADS  MATH  Google Scholar 

  10. Maurya, S.K., Gupta, Y.K.: Prathiba: a class of charged relativistic superdense star models. Int. J. Theor. Phys. 51, 943–953 (2012). doi:10.1007/s10773-011-0968-7

    MATH  Google Scholar 

  11. Murad, H.M., Fatema, S.: A family of well behaved charge analogues of Durgapal’s perfect fluid exact solution in general relativity. Astrophys. Space Sci. 343, 587–597 (2013). doi:10.1007/s10509-012-1277-1

    ADS  Google Scholar 

  12. Bonnor, W.B.: The mass of a static charged sphere. Z. Phys. 160, 59–65 (1960). doi:10.1007/BF01337478

    ADS  MATH  MathSciNet  Google Scholar 

  13. Bonnor, W.B.: Equilibrium of a charged sphere. Mon. Not. R. Astron. Soc. 29, 443–446 (1965). http://adsabs.harvard.edu/abs/1965MNRAS.129..443B

    ADS  MathSciNet  Google Scholar 

  14. Whitman, P.G., Burch, R.C.: Charged spheres in general relativity. Phys. Rev. D 24, 2049–2055 (1981). Erratum: Phys. Rev. D 25, 1744 (1982). doi:10.1103/PhysRevD.24.2049

    ADS  Google Scholar 

  15. Stettner, R.: On the stability of homogeneous, spherically symmetric, charged fluids in relativity. Ann. Phys. 80, 212–227 (1973). doi:10.1016/0003-4916(73)90325-4

    ADS  MATH  Google Scholar 

  16. de Felice, F., Yu, Y., Fang, J.: Relativistic charged spheres. Mon. Not. R. Astron. Soc. 277, L17–L19 (1995). http://adsabs.harvard.edu/abs/1995MNRAS.277L..17D

    ADS  Google Scholar 

  17. Tiwari, R.N., Rao, J.R., Kanakamedala, R.R.: Electromagnetic mass models in general relativity. Phys. Rev. D 30, 489–491 (1984). doi:10.1103/PhysRevD.30.489

    ADS  MathSciNet  Google Scholar 

  18. Dionysiou, D.D.: Electromagnetic mass model of a static charged perfect fluid sphere. Astrophys. Space Sci. 111, 207–209 (1985). doi:10.1007/BF00651531

    ADS  Google Scholar 

  19. Ivanov, B.V.: Static charged perfect fluid spheres in general relativity. Phys. Rev. D 65, 104001 (2002). doi:10.1103/PhysRevD.65.104001

    ADS  MathSciNet  Google Scholar 

  20. Rahaman, F., Jamil, M., Chakraborty, K.: Revisiting the classical electron model in general relativity. Astrophys. Space Sci. 331, 191–197 (2011). doi:10.1007/s10509-010-0446-3

    ADS  MATH  Google Scholar 

  21. Bijalwan, N.: Exact solutions. Classical electron model. Astrophys. Space Sci. 336, 485–489 (2011). doi:10.1007/s10509-011-0796-5

    ADS  Google Scholar 

  22. Pant, N., Rajasekhara, S.: Variety of well behaved parametric classes of relativistic charged fluid spheres in general relativity. Astrophys. Space Sci. 333, 161–168 (2011). doi:10.1007/s10509-011-0607-z

    ADS  MATH  Google Scholar 

  23. Kiess, T.: Exact physical Maxwell-Einstein Tolman-VII solution and its use in stellar models. Astrophys. Space Sci. 339, 329–338 (2012). doi:10.1007/s10509-012-1013-x

    ADS  Google Scholar 

  24. Mak, M.K., Harko, T.: Quark stars admitting a one-parameter group of conformal motions. Int. J. Mod. Phys. D 13, 149–156 (2004). doi:10.1142/S0218271804004451

    ADS  MATH  Google Scholar 

  25. Weber, F., et al.: Ultra-dense neutron star matter, strange quark stars, and the nuclear equation of state. Int. J. Mod. Phys. E 16, 1165–1180 (2007). doi:10.1142/S0218301307006599

    ADS  Google Scholar 

  26. Komathiraj, K., Maharaj, S.D.: Analytical models of quark stars. Int. J. Mod. Phys. D 16, 1803–1811 (2007). doi:10.1142/S0218271807011103

    ADS  MATH  MathSciNet  Google Scholar 

  27. Negreiros, R.P., et al.: Electrically charged strange quark stars. Phys. Rev. D 80, 083006 (2009). doi:10.1103/PhysRevD.80.083006

    ADS  Google Scholar 

  28. Chattopadhyay, P.K., Deb, R., Paul, B.C.: Relativistic solution for a class of static compact charged star in pseudo-spheroidal spacetime. Int. J. Mod. Phys. D 21, 1250071 (2012). doi:10.1142/S021827181250071X

    ADS  MathSciNet  Google Scholar 

  29. Zhang, T.X.: Electric redshift and quasars. Astrophys. J. 636, L61–L64 (2006). doi:10.1086/500255

    ADS  Google Scholar 

  30. Bodmer, A.: Collapsed nuclei. Phys. Rev. D 4, 1601–1606 (1971). doi:10.1103/PhysRevD.4.1601

    ADS  Google Scholar 

  31. Witten, E.: Cosmic separation of phases. Phys. Rev. D 30, 272–285 (1984). doi:10.1103/PhysRevD.30.272

    ADS  MathSciNet  Google Scholar 

  32. Glendenning, N.K., Weber, F.: Nuclear solid crust on rotating strange quark stars. Astrophys. J. 400, 647–658 (1992). doi:10.1086/172026

    ADS  Google Scholar 

  33. Glendenning, N.K.: Compact Stars: Nuclear Physics. Particle Physics, and General Relativity, 2nd edn. Astrophysics and Space Science Library. Springer, New York (2000)

    Google Scholar 

  34. Weber, F., et al.: Structure of quark stars. In: van Leeuwen, J. (ed.) Neutron Stars and Pulsars: Challenges and Opportunities After 80 Years. Proceedings IAU Symposium, vol. 291 (2012). arXiv:1210.1910v1 [astro-ph.SR]

    Google Scholar 

  35. Weber, F., Negreiros, R., Rosenfield, P.: Neutron star interiors and the equation of state of superdense matter. In: Becker, W. (ed.) Neutron Stars and Pulsars. Astrophysics and Space Science Library, vol. 357, pp. 213–245. Springer, Berlin (2009)

    Google Scholar 

  36. Weber, F., et al.: From crust to core: a brief review of quark matter in neutron stars. Int. J. Mod. Phys. D 19, 1427–1436 (2010). doi:10.1142/S0218271810017329

    ADS  MATH  Google Scholar 

  37. Brecher, K., Caporaso, G.: Obese ‘neutron’ stars. Nature 259, 377–378 (1976). doi:10.1038/259377a0

    ADS  Google Scholar 

  38. Haensel, P., Zdunik, L., Schaeffer, R.: Strange quark stars. Astron. Astrophys. 160, 121–128 (1986). http://adsabs.harvard.edu/abs/1986A&A...160..121H

    ADS  Google Scholar 

  39. Alcock, C., Farhi, E., Olinto, A.: Strange stars. Astrophys. J. 310, 261–272 (1986). doi:10.1086/164679

    ADS  Google Scholar 

  40. Haensel, P.: Strange matter and neutron stars. Prog. Theor. Phys. Suppl. 91(Supplement 1), 268–283 (1987). doi:10.1143/PTP.91.268

    ADS  Google Scholar 

  41. Haensel, P.: From strange matter to strange stars. Acta Phys. Pol. B 18, 739–757 (1987)

    ADS  Google Scholar 

  42. Alcock, C.: Strange stars. Nucl. Phys. B, Proc. Suppl. 24B, 93–102 (1991). doi:10.1016/0920-5632(91)90305-X

    ADS  Google Scholar 

  43. Alcock, C., Olinto, A.: Exotic phases of hadronic matter and their astrophysical implication. Annu. Rev. Nucl. Part. Sci. 38, 161–184 (1988). doi:10.1146/annurev.ns.38.120188.001113

    ADS  Google Scholar 

  44. Cheng, K.S., Dai, Z.G., Lu, T.: Strange stars and related astrophysical phenomena. Int. J. Mod. Phys. D 7, 139–176 (1998). doi:10.1142/S0218271898000139

    ADS  Google Scholar 

  45. Madsen, J.: Physics and astrophysics of strange quark matter. In: Cleymans, J., Geyer, H.B., Scholtz, F.G. (eds.) Hadrons in Dense Matter and Hadrosynthesis. Lecture Notes in Physics, vol. 516, pp. 162–203. Springer, Berlin (1999)

    Google Scholar 

  46. Bombaci, I.: Possible signature for deconfined strange quark matter in compact star. Nucl. Phys. A 681, 205c–212c (1988). doi:10.1016/S0375-9474(00)00504-2

    ADS  Google Scholar 

  47. Bombaci, I.: Are there strange stars in the universe? In: Kramer, M., Wex, N., Weilebinski, R. (eds.) Pulsar Astronomy—2000 and Beyond. ASP Conference Series, vol. 202, pp. 659–660 (2000)

    Google Scholar 

  48. Bombaci, I.: Strange quark stars. Structural properties and possible signatures for their existence. In: Blaschke, D., Glendenning, N.K., Sedrakian, A. (eds.) Physics of Neutron Star Interiors. Lecture Notes in Physics, vol. 578, pp. 253–284. Springer, Berlin (2001)

    Google Scholar 

  49. Xu, R.X.: Strange quark stars—a review. In: Li, X.D., Trimble, V., Wang, Z.R. (eds.) High Energy Processes and Phenomena in Astrophysics IAU Symposium, vol. 214 (2003)

    Google Scholar 

  50. Xu, R.X.: Solid bare strange quark stars. In: Camilo, F., Gaensler, B.M. (eds.) Young Neutron Stars and Their Environments IAU Symposium, vol. 218 (2004)

    Google Scholar 

  51. Xu, R.X.: Strange quark stars. Acta Astron. Sin. 44, 245–248 (2003)

    ADS  Google Scholar 

  52. Haensel, P.: Equation of state of dense matter and maximum mass of neutron stars. Final stages of stellar evolution. EAS Publ. Ser. 7, 249–282 (2003). doi:10.1051/eas:2003043

    Google Scholar 

  53. Sharma, R., Maharaj, S.D.: A class of relativistic stars with a linear equation of state. Mon. Not. R. Astron. Soc. 375, 1265–1268 (2007). doi:10.1111/j.1365-2966.2006.11355.x

    ADS  Google Scholar 

  54. Weber, F.: Strange quark matter and compact stars. Prog. Part. Nucl. Phys. 54, 193–288 (2005). doi:10.1016/j.ppnp.2004.07.001

    ADS  Google Scholar 

  55. Haensel, P., Potekhin, A.Y., Yakovlev, D.G.: Neutron Stars 1: Equation of State and Structure. Astrophysics and Space Science Library. Springer, Berlin (2007)

    Google Scholar 

  56. Camenzind, M.: Compact Objects in Astrophysics White Dwarfs, Neutron Stars and Black Holes. Astrophysics and Space Science Library. Springer, Berlin (2007)

    Google Scholar 

  57. Ghosh, P.: Rotation and Accretion Powered Pulsars. World Scientific Series in Astronomy and Astrophysics, vol. 10. World Scientific, Singapore (2010)

    Google Scholar 

  58. Bisnovatyi-Kogan, G.S.: Stellar Physics. 2. Stellar Evolution and Stability, 2nd edn. Astrophysics and Space Science Library. Springer, Berlin (2010)

    MATH  Google Scholar 

  59. Schmitt, A.: Dense Matter in Compact Stars: A Pedagogical Introduction. Lecture Notes in Physics, vol. 811. Springer, Berlin (2010)

    Google Scholar 

  60. Kurkela, A., Romatschke, P., Vuorinen, A.: Cold quark matter. Phys. Rev. D 81, 105021 (2010). doi:10.1103/PhysRevD.81.105021

    ADS  Google Scholar 

  61. Rodrigues, H., et al.: Massive compact stars at quark stars. Astrophys. J. 730, 31 (2011). doi:10.1088/0004-637X/730/1/31

    ADS  Google Scholar 

  62. Weissenborn, S., et al.: Quark matter in massive compact stars. Astrophys. J. Lett. 740, L14 (2011). doi:10.1088/2041-8205/740/1/L14

    ADS  Google Scholar 

  63. Usov, V.V.: Electric fields at the quark surface of strange stars in the color-flavor locked phase. Phys. Rev. D, Part. Fields 70, 067301 (2004). doi:10.1103/PhysRevD.70.067301

    ADS  Google Scholar 

  64. Usov, V.V., Harko, T., Cheng, K.S.: Structure of the electrospheres of bare strange stars. Astrophys. J. 620, 915 (2005). doi:10.1086/427074

    ADS  Google Scholar 

  65. Negreiros, R.P., et al.: Properties of bare strange stars associated with surface electric fields. Phys. Rev. D 82, 103010 (2010). doi:10.1103/PhysRevD.82.103010

    ADS  Google Scholar 

  66. Wyman, M.: Radially symmetric distribution of matter. Phys. Rev. 75, 1930–1936 (1949). doi:10.1103/PhysRev.75.1930

    ADS  MATH  MathSciNet  Google Scholar 

  67. Adler, R.J.: A fluid sphere in general relativity. J. Math. Phys. 15, 727–729 (1974). doi:10.1063/1.1666717

    ADS  Google Scholar 

  68. Adams, R.C., Warburton, R.D., Cohen, J.M.: Analytic stellar models in general relativity. Astrophys. J. 200, 263–268 (1975). doi:10.1086/153627

    ADS  Google Scholar 

  69. Kuchowicz, B.: A physically realistic sphere of perfect fluid to serve as a model of neutron stars. Astrophys. Space Sci. 33, L13–L14 (1975). doi:10.1007/BF00646028

    ADS  MathSciNet  Google Scholar 

  70. Delgaty, M.S.R., Lake, K.: Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein’s equations. Comput. Phys. Commun. 115, 395 (1998). doi:10.1016/S0010-4655(98)00130-1

    ADS  MATH  MathSciNet  Google Scholar 

  71. Pant, M.J., Tewari, B.C.: Well behaved class of charge analogue of Adler’s relativistic exact solution. J. Mod. Phys. 2, 481–487 (2011). doi:10.4236/jmp.2011.26058

    Google Scholar 

  72. Pant, N., Tewari, B.C., Fuloria, P.: Well behaved parametric class of exact solutions of Einstein–Maxwell field equations in general relativity. J. Mod. Phys. 2, 1538–1543 (2011). doi:10.4236/jmp.2011.212186

    Google Scholar 

  73. Pant, N., Faruqi, S.: Relativistic modeling of a superdense star containing a charged perfect fluid. Gravit. Cosmol. 18, 204–210 (2012). doi:10.1134/S0202289312030073

    ADS  MATH  Google Scholar 

  74. Murad, H.M.: A new well behaved class of charge analogue of Adler’s relativistic exact solution. Astrophys. Space Sci. 343, 187–194 (2013). doi:10.1007/s10509-012-1258-4

    ADS  Google Scholar 

  75. Durgapal, M.C., Rawat, P.S.: Non-rigid massive spheres in general relativity. Mon. Not. R. Astron. Soc. 180, 659–662 (1980). http://adsabs.harvard.edu/abs/1980MNRAS.192..659D

    ADS  Google Scholar 

  76. Durgapal, M.C.: A class of new exact solutions in general relativity. J. Phys. A, Math. Gen. 15, 2637–2644 (1982). doi:10.1088/0305-4470/15/8/039

    ADS  MathSciNet  Google Scholar 

  77. Durgapal, M.C., Bannerji, R.: New analytic stellar model in general relativity. Phys. Rev. D 27, 328–331 (1983). doi:10.1103/PhysRevD.27.328

    ADS  MathSciNet  Google Scholar 

  78. Durgapal, M.C., Pande, A.K., Phuloria, R.S.: Physically realizable relativistic stellar structures. Astrophys. Space Sci. 102, 49–66 (1984). doi:10.1007/BF00651061

    ADS  Google Scholar 

  79. Durgapal, M.C., Fuloria, R.S.: Analytic realistic model for a superdense star. Gen. Relativ. Gravit. 17, 671–681 (1985). doi:10.1007/BF00763028

    ADS  MathSciNet  Google Scholar 

  80. Pant, D.N., Sah, A.: Massive fluid spheres in general relativity. Phys. Rev. D 32, 1358–1363 (1985). doi:10.1103/PhysRevD.32.1358

    ADS  Google Scholar 

  81. Sharma, R., Karmakar, S., Mukherjee, S.: Maximum mass of a class of cold compact stars. Int. J. Mod. Phys. D 15, 405–418 (2006). doi:10.1142/S0218271806008012

    ADS  MATH  Google Scholar 

  82. Murad, H.M., Fatema, S.: A family of well behaved charge analogues of Durgapal’s perfect fluid exact solution in general relativity II. Astrophys. Space Sci. 344, 69–78 (2013). doi:10.1007/s10509-012-1320-2

    ADS  Google Scholar 

  83. Tolman, R.C.: Relativity, Thermodynamics, and Cosmology, pp. 239–241. Clarendon, Oxford (1934)

    Google Scholar 

  84. Tolman, R.C.: Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 55, 364–373 (1939). doi:10.1103/PhysRev.55.364

    ADS  Google Scholar 

  85. Dionysiou, D.D.: Equilibrium of a static charged perfect fluid sphere. Astrophys. Space Sci. 85, 331–343 (1982). doi:10.1007/BF00653455

    ADS  MATH  MathSciNet  Google Scholar 

  86. Stephani, H., et al.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  87. Lake, K.: All static spherically symmetric perfect-fluid solutions of Einstein’s equations. Phys. Rev. D 67, 104015 (2003). doi:10.1103/PhysRevD.67.104015

    ADS  MathSciNet  Google Scholar 

  88. Kiess, T.: Exact solutions to Einstein’s field equations for perfect spherically symmetric static fluids. Class. Quantum Gravity 26, 025011 (2009). doi:10.1088/0264-9381/26/2/025011

    ADS  MathSciNet  Google Scholar 

  89. Buchdahl, H.A.: Regular general relativistic charged fluid spheres. Acta Phys. Pol. B 10, 673–685 (1979)

    MathSciNet  Google Scholar 

  90. Rhoades, C.E., Ruffini, R.: Maximum mass of a neutron star. Phys. Rev. Lett. 32, 324–327 (1974). doi:10.1103/PhysRevLett.32.324

    ADS  Google Scholar 

  91. Hegyi, D., Lee, T.-S.H., Cohen, J.M.: The maximum mass of non-rotating neutron stars. Astrophys. J. 201, 462–466 (1975). doi:10.1086/153908

    ADS  Google Scholar 

  92. Hartle, J.B.: Bounds on the mass and moment of inertia non-rotating neutron stars. Phys. Rep. 46, 201–247 (1978). doi:10.1016/0370-1573(78)90140-0

    ADS  Google Scholar 

  93. Chakrabarty, S.: Equation of state of strange quark matter and strange star. Phys. Rev. D 43, 627–630 (1991). doi:10.1103/PhysRevD.43.627

    ADS  Google Scholar 

  94. Tikekar, R.: Spherical charged fluid distributions in general relativity. J. Math. Phys. 25, 1481–1483 (1984). doi:10.1063/1.526318

    ADS  MATH  MathSciNet  Google Scholar 

  95. Buchdahl, H.A.: General relativistic fluid spheres. Phys. Rev. 116, 1027–1034 (1959). doi:10.1103/PhysRev.H6.1027

    ADS  MATH  MathSciNet  Google Scholar 

  96. Böhmer, C.G., Harko, T.: Minimum mass radius ratio for charged gravitational objects. Gen. Relativ. Gravit. 39, 757–775 (2007). doi:10.1007/s10714-007-0417-3

    ADS  MATH  Google Scholar 

  97. Andréasson, H.: Sharp bounds on the critical stability radius for relativistic charged spheres. Commun. Math. Phys. 288, 715–730 (2009). doi:10.1007/s00220-008-0690-3

    ADS  MATH  Google Scholar 

  98. Pant, N., Mehta, R.N., Pant, M.J.: Well behaved class of charge analogue of Heintzmann’s relativistic exact solution. Astrophys. Space Sci. 332, 473–479 (2011). doi:10.1007/s10509-010-0509-5

    ADS  MATH  Google Scholar 

  99. Orlyansky, O.Y.: Singularity-free static fluid spheres in general relativity. J. Math. Phys. 38, 5301–5304 (1997). doi:10.1063/1.531943

    ADS  MATH  MathSciNet  Google Scholar 

  100. Wilson, S.J.: Exact solution of a static charged sphere in general relativity. Can. J. Phys. 47, 2401–2404 (1969). doi:10.1139/p69-292

    ADS  Google Scholar 

  101. Anninos, P., Rothman, T.: Instability of extremal relativistic charged spheres. Phys. Rev. D 65, 024003 (2001). doi:10.1103/PhysRevD.65.024003

    ADS  Google Scholar 

  102. Giuliani, A., Rothman, T.: Absolute stability limit for relativistic charged spheres. Gen. Relativ. Gravit. 40, 1427–1447 (2008). doi:10.1007/s10714-007-0539-7

    ADS  MATH  MathSciNet  Google Scholar 

  103. Murad, M.H., Fatema, S.: (in preparation)

  104. Zdunik, J.L.: Strange stars—linear approximation of the EOS and maximum QPO frequency. Astron. Astrophys. 359, 311–315 (2000). http://adsabs.harvard.edu/abs/2000A&A...359..311Z

    ADS  Google Scholar 

  105. Lattimer, J.M., Prakash, M.: Neutron star structure and the equation of state. Astrophys. J. 550, 426–442 (2001). doi:10.1086/319702

    ADS  Google Scholar 

  106. Lattimer, J.M., Prakash, M.: The physics of neutron stars. Science 304, 536–542 (2004). doi:10.1126/science.1090720. For recent review see, Lattimer, J.M., Annu. Rev. Nucl. Part. Sci., 62, 485–515 (2012), doi:10.1146/annurev-nucl-102711-095018

    ADS  Google Scholar 

  107. Bejger, M., Haensel, P.: Moments of inertia for neutron and strange stars: limits derived for the Crab pulsar. Astron. Astrophys. 396, 917–921 (2002). doi:10.1051/0004-6361:20021241

    ADS  Google Scholar 

Download references

Acknowledgements

One of us (M.H. Murad) is greatly indebted to Dr. Neeraj Pant, Associate Professor, National Defense Academy, India, for his suggestions and articles, he sent, which helped us prepare this manuscript. Author also expresses his gratitude to Professor Dr. Naoki Itoh, Department of Physics, Sophia University, Japan, for sending his pioneering article and the critical comments he made on authors’ previous works.

Authors are also very much grateful to the reviewers for pointing out various technical errors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hassan Murad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fatema, S., Murad, M.H. An Exact Family of Einstein–Maxwell Wyman–Adler Solution in General Relativity. Int J Theor Phys 52, 2508–2529 (2013). https://doi.org/10.1007/s10773-013-1538-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1538-y

Keywords

Navigation