Skip to main content
Log in

On the Poincaré Gauge Theory of Gravitation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We present a compact, self-contained review of the conventional gauge theoretical approach to gravitation based on the local Poincaré group of symmetry transformations. The covariant field equations, Bianchi identities and conservation laws for angular momentum and energy-momentum are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Utiyama, R.: Phys. Rev. 101, 1597 (1956)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Yang, C.N., Mills, R.L.: Phys. Rev. 96, 191 (1954)

    Article  MathSciNet  ADS  Google Scholar 

  3. Sciama, D.W.: On the analog between charge and spin in general relativity. In: Recent Developments in General Relativity, Festschrift for Leopold Infeld, p. 415. Pergamon Press, New York (1962)

    Google Scholar 

  4. Kibble, T.W.: Lorentz invariance and the gravitational field. J. Math. Phys. 2, 212 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  5. Grignani, G., et al.: Gravity and the Poincaré group. Phys. Rev. D 45, 2719 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  6. Hehl, F.W., et al.: Metric-affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rep. 258, 1–171 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  7. Inomata, A., et al.: General relativity as a limit of the de Sitter gauge theory. Phys. Rev. D 19, 1665 (1978)

    Article  ADS  Google Scholar 

  8. Ivanov, E.A., Niederle, J.: Gauge formulation of gravitation theories, I. The Poincaré, de Sitter and conformal cases. Phys. Rev. D 25, 976 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  9. Ivanov, E.A., Niederle, J.: Gauge formulation of gravitation theories, II. The special conformal case. Phys. Rev. D 25, 988 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  10. Mansouri, F., et al.: Gravity as a gauge theory. Phys. Rev. D 13, 3192 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  11. Mansouri, F.: Conformal gravity as a gauge theory. Phys. Rev. Lett. 42, 1021 (1979)

    Article  ADS  Google Scholar 

  12. Sardanashvily, G.: On the geometric foundation of classical gauge gravitation theory, arXiv:gr-qc/0201074

  13. Chang, L.N., et al.: Geometrical approach to local gauge and supergauge invariance: Local gauge theories and supersymmetric strings. Phys. Rev. D 13, 235 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  14. Ne’eman, Y., Regge, T.: Gravity and supergravity as gauge theories on a group manifold. Phys. Lett. B 74, 54 (1978)

    Article  ADS  Google Scholar 

  15. Toller, M.: Classical field theory in the space of reference frames. Nuovo Cim. B 44, 67–98 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  16. Cognola, G., et al.: Theories of gravitation in the space of reference frames. Nuovo Cim. B 54, 325–348 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  17. Crawford, J.P.: Spinors in general relativity. In: Baylis, W.E. (ed.) Clifford (Geometric) Algebras: With Applications in Physics, Mathematics and Engineering. Birkhäuser, Basel (1996)

    Google Scholar 

  18. Hehl, F.W., et al.: General relativity with spin and torsion: foundations and prospects. Rev. Mod. Phys. 48, 393 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  19. Mansouri, F.: Superunified theories based on the geometry of local (super-) gauge invariance. Phys. Rev. D 16, 2456 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  20. Schouten, J.: Ricci Calculus. Springer, Berlin (1954)

    MATH  Google Scholar 

  21. Dewitt, B.S.: Dynamical theory of groups and fields (Les Houches Lectures 1963). In: Relativity, Groups and Topology. Gordon and Breach, New York (1965)

    Google Scholar 

  22. Hehl, F.W., et al.: Nonlinear spinor equation and asymmetric connection in general relativity. J. Math. Phys. 12, 1334 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  23. Blagojevic, M.: Three lectures on Poincaré gauge theory, arXiv:gr-qc/0302040

  24. Wald, R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. The University of Chicago Press, Chicago (1994)

    MATH  Google Scholar 

  25. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  26. Carroll, S., et al.: Consequences of propagating torsion in connection dynamic theories of gravity, arXiv:gr-qc/9403058

  27. Shapiro, I.L.: Physical aspects of spacetime torsion, arXiv:hep-th/0103093

  28. Brill, D.R., et al.: Interaction of neutrinos and gravitational fields. Rev. Mod. Phys. 29, 465 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Schwinger, J.: Energy and momentum density in field theory. Phys. Rev. 130 (1962)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, S.A., Cafaro, C., Capozziello, S. et al. On the Poincaré Gauge Theory of Gravitation. Int J Theor Phys 48, 3426 (2009). https://doi.org/10.1007/s10773-009-0149-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-009-0149-0

Keywords

Navigation