Acharya, R. and Sudarshan, E. C. G. (1960). Front description in relative quantum mechanics,

*Journal of Mathematical Physics* **1**, 532–536.

Google ScholarAmbrosini, D., Ponticiello, A., Schirripa Spagnolo, G., Borghi, R., and Gori, F. (1997). Bouncing light beams and the Hamiltonian analogy.

*European Journal of Physics* **18**, 284–289.

Google ScholarBellman, R. and Vasudevan, R. (1986).

*Wave Propagation: An Invariant Imbedding Approach*, Reidel, Dordrecht.

Google ScholarBjorken, J. D. and Drell, S. D. (1964).

*Relativistic Quantum Mechanics*, McGraw-Hill, New York, San Francisco.

Google ScholarBorn, M. and Wolf, E. (1999).

*Principles of Optics*, 7th edn., Cambridge University Press, United Kingdom.

Google ScholarChen, P. (1999) (ed.).

*Proceedings of the 15th Advanced ICFA Beam Dynamics Workshop on Quantum Aspects of Beam Physics*, 4–9 January 1998, Monterrey, California, USA, World Scientific, Singapore,

http://www.slac.stanford.edu/grp/ara/qabp/qabp.html; Chen, P. (2002) (ed.),

*Proceedings of the 18th Advanced ICFA Beam Dynamics Workshop on Quantum Aspects of Beam Physics*, 15–20 October 2000, Capri, Italy, World Scientific, Singapore,

http://qabp2k.sa.infn.it/; Chen, P. (2003) (ed.).

*Proceedings of the Joint 28th ICFA Advanced Beam Dynamics and Advanced & Novel Accelerators Workshop on QUANTUM ASPECTS OF BEAM PHYSICS and Other Critical Issues of Beams in Physics and Astrophysics*, 7–11 January 2003, Hiroshima University, Japan, World Scientific, Singapore,

http://home.hiroshima-u.ac.jp/ogata/qabp/home.html; Workshop Reports:

*ICFA Beam Dynamics Newsletter* **16**, (1988) 22–25;

*ibid* **23**, (2000) 13–14;

*ibid* **30**, (2003) 72–75;

*Bulletin of the Association of Asia Pacific Physical Societies* **13**(1), (2003) 34–37.

Conte, M., Jagannathan, R., Khan, S. A., and Pusterla, M. (1996). Beam optics of the Dirac particle with anomalous magnetic moment.

*Particle Accel.* **56**, 99–126.

Google ScholarDattoli, G., Renieri, A., and Torre, A. (1993).

*Lectures on the Free Electron Laser Theory and Related Topics*, World Scientific, Singapore.

Google ScholarDragt, A. J., Forest, E., and Wolf, K. B. (1986). *Lie Methods in Optics*, *Lecture Notes in Physics*, Vol. 250, Springer Verlag, pp. 105–157.

Dragt, A. J. and Forest, E. (1986). *Adv. Imag. Electron Phys.* **67**, 65–120; Dragt, A. J., Neri, F., Rangarajan, G., Douglas, D. R., Healy, L. M., and Ryne, R. D. (1988). Lie algebriac treatment of linear and nonlinear beam dynamics. *Ann. Rev. Nucl. Part. Sci.* **38**, 455–496; Forest, E. and Hirata, K. (1992). *A Contemporary Guide to Beam Dynamics*, KEK Report 92-12, National Laboratory for High Energy Physics, Tsukuba, Japan; Forest, E., Berz, M., and Irwin, J. (1989). *Particle Accel.* **24**, 91–97; Rangarajan, G., Dragt, A. J., and Neri, F. (1990). Solvable map representation of a nonlinear sympletic map. *Particle Accel.* **28**, 119–124; Ryne, R. D. and Dragt, A. J. (1991). Magnetic optics calculations for cylinderically symmetric beams. *Particle Accel.* **35**, 129–165.

Dragt, A. J. (1998). Lie algebriac theory of geometrical optics and optical aberrations. *J. Opt. Soc. Am* **72**, (1982) 372; *Lie Algebraic Method for Ray and Wave Optics*, University of Maryland Physics Department Report.

Fedele, R. and Man’ko, V. I. (1999). The role of semiclassical description in the quantum-like theory of light rays.

*Physical Review E* **60**, 6042–6050.

Google ScholarFeshbach, H. and Villars, F. M. H. (1958). Elementary relativistic wave mechanics of spin 0 and spin 1/2 particles.

*Reviews of Modern Physics* **30**, 24–45.

Google ScholarFishman, L. and McCoy, J. J. (1984). Derivation and application of extended parabolic wave theories. Part I. The factored Helmholtz equation.

*Journal of Mathematical Physics* **25**, 285–296.

Google ScholarFoldy, L. L. and Wouthuysen, S. A. (1950). On the Dirac theory of spin 1/2 particles and its non-relativistic limit.

*Physical Review* **78**, 29–36.

Google ScholarGoodman, J. W. (1996).

*Introduction to Fourier Optics*, 2nd edn., McGraw-Hill, New York.

Google ScholarHawkes, P. W. and Kasper, E. (1989). *Principles of Electron Optics*, Vols. I and II, Academic Press, London; Hawkes, P. W. and Kasper, E. (1994) *Principles of Electron Optics*. Vol. 3: *Wave Optics*, Academic Press, London and San Diego.

Jagannathan, R., Simon, R., Sudarshan, E. C. G., and Mukunda, N. (1989). Quantum theory of magnetic electron lenses based on the Dirac equation.

*Physics Letters A* **134**, 457–464.

Google ScholarJagannathan, R. (1990). Quantum theory of electron lenses based on the Dirac equation.

*Physics Letters A* **42**, 6674–6689.

Google ScholarJagannathan, R. (1993). Dirac equation and electron optics. In Dutt, R. and Ray, A. K. (eds.),

*Dirac and Feynman: Pioneers in Quantum Mechanics*, Wiley Eastern, New Delhi, India, pp. 75–82.

Google ScholarJagannathan, R. and Khan, S. A. (1996). Quantum theory of the optics of charged particles. In Hawkes Peter, W. (ed.),

*Advances in Imaging and Electron Physics*, Vol. 97, Academic Press, San Diego, pp. 257–358.

Google ScholarJagannathan, R. and Khan, S. A. (1997). Quantum mechanics of accelerator optics. *ICFA Beam Dynamics Newsletter* **13**, 21–27 (ICFA: International Committee for Future Accelerators).

Jagannathan, R. and Khan, S. A. (1998). Several articles in Proceedings/E-Prints on the Quantum theory of charged-particle beam optics, *arXiv: physics/9803042*; *arXiv: physics/0101060*; *arXiv: physics/9809032*; *arXiv: physics/9904063*; *arXiv: physics/0112085*; *arXiv: physics/0112086* and *arXiv: physics/0304099*.

Khan, S. A. and Jagannathan, R. (1995). On the quantum mechanics of charged particle beam transport through magnetic lenses.

*Physical Review E* **51**, 2510–2515.

Google ScholarKhan, S. A. (1997). *Quantum Theory of Charged-Particle Beam Optics*, Ph.D. Thesis, University of Madras, Chennai, India.

Khan, S. A., Jagannathan, R., and Simon, R. (2002). Foldy-Wouthuysen transformation and a quasiparaxial approximation scheme for the scalar wave theory of light beams, *arXiv: physics/0209082* (*communicated*).

Khan, S. A. (2002). Analogies between light optics and charged-particle optics. *ICFA Beam Dynamics Newsletter* **27**, 42–48; *arXiv: physics/0210028* (ICFA: International Committee for Future Accelerators).

Magnus, W. (1954). On the exponential solution of differential equations for a linear operator.

*Communications on Pure and Applied Mathematics* **7**, 649–673.

Google ScholarPryce, M. H. L. (1948). The mass-centre in the restricted theory of relativity and its connexion with the quantum theory of elementary particles. *Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences* **195**, 62–81.

Tani, S. (1951). Connection between particle models and field theories. I. The case spin 1/2.

*Progress of Theoretical Physics* **6**, 267–285.

Google ScholarTodesco, E. (1999). Overview of single-particle nonlinear dynamics, CERN-LHC-99-1-MMS, 16pp; Talk given at 16th ICFA Beam Dynamics Workshop on Nonlinear and Collective Phenomena in Beam Physics, Arcidosso, Italy, 1–5 September 1998; *AIP Conference Proceedings* **468**, 157–172.

Turchetti, G., Bazzani, A., Giovannozzi, M., Servizi, G., and Todesco, E. (1989). Normal forms for symplectic maps and stability of beams in particle accelarators. In *Proceedings of the Dynamical symmetries and Chaotic Behaviour in Physical Systems*, Bologna, Italy, pp. 203–231.

Wilcox, R. M. (1967). Exponential operators and parameter differentiation in quantum physics.

*Journal of Mathematical Physics* **8**(4), 962–982.

Google Scholar