Andersson, B. (1986). The experiential gestalt of causation: A common core to pupils’ preconceptions in science. *European Journal of Science Education*, *2*, 155–171.

Babai, R. & Alon, T. (2004). Intuitive thinking, cognitive level or grade level: What predicts students’ incorrect responses in science and mathematics? Paper presented at the National Association of Research in Science Teaching (NARST) Annual Conference. Vancouver, Canada.

Babai, R., Levyadun, T., Stavy, R. & Tirosh, D. (in press). Intuitive rules in science and mathematics: A reaction time study. *International Journal of Mathematical Education in Science and Technology*.

Confrey, J. (1990). A review of the research on student conceptions in mathematics, science and programming.

*Review of Research in Education*,

*16*, 3–56.

CrossRefDehaene, S. (1997). *The number sense: How the mind creates mathematics*. New York: Oxford University Press.

diSessa, A.A. (1983). Phenomenology and the evaluation of intuition. In D. Gentner & A.L. Stevens (Eds.), *Mental models* (pp. 15–33). Hillsdale, New Jersey: Lawrence Erlbaum.

Driver, R. (1994). *Making a sense of secondary science*. London: Routledge.

Falk, R., Falk, R. & Levin, I. (1980). A potential for learning probability in young children.

*Educational Studies in Mathematics*,

*11*, 181–204.

CrossRefFischbein, E. (1987). *Intuition in science and mathematics*. Dordrecht, The Netherlands: Reidel.

Fischbein, E. (1999). Intuitions and schemata in mathematical reasoning.

*Educational Studies in Mathematics*,

*38*, 11–50.

CrossRefGreca, I.M. & Moreira, M.A. (2000). Mental models, conceptual models, and modeling.

*International Journal of Science Education*,

*22*, 1–11.

CrossRefGreen, D.R. (1983). A survey of probabilistic concepts in 3000 students aged 11–16 years. In D.R. Grey et al. (Eds.), *Proceedings of the First International Conference on Teaching Statistics* (pp. 766–783). Sheffield, England: Teaching Statistics Trust.

Gutierrez, R. & Ogborn, J. (1992). A causal framework for analysing alternative conceptions. *International Journal of Science Education*, *14*, 201–220.

Kahneman, D. & Tversky, A. (2000). *Choices, values and frames*. New York: Cambridge University Press and the Russell Sage Foundation.

Perkins, D.N. & Simmons, R. (1988). Patterns of misunderstanding: An integrative model for science, math, and programming.

*Review of Educational Research*,

*58*, 303–326.

CrossRefShaughnessy, J.M. (1992). Research in probability and statistics: Reflections and directions. In D.A. Grouws (Ed.), *Handbook of research on mathematics teaching and learning* (pp. 465–494). New York: Macmillan Publishing.

Spieler, D. (2000). *Encyclopedia of Psychology*, *7*, 12–14.

Stavy, R. & Tirosh, D. (1996). Intuitive rules in science and mathematics: The case of ‘more of A–more of B.’ *International Journal of Science Education*, *18*, 653–667.

Stavy, R. & Tirosh, D. (2000). *How students (mis-)understand science and mathematics: Intuitive rules*. New York: Teachers College Press.

Stavy, R., Babai, R., Tsamir, P., Tirosh, D., Lin, F.L. & McRobbie, C. (in press). Are intuitive rules universal? *International Journal of Science and Mathematics Education*.

Tirosh, D. & Stavy, R. (1999). Intuitive rules: A way to explain and predict students’ reasoning.

*Educational Studies in Mathematics*,

*38*, 51–66.

CrossRefTsamir, P., Tirosh, D. & Stavy, R. (1997). Intuitive rules and comparison tasks: The grasp of vertical angles. In G.A. Makrides (Ed.), *Proceedings of the First Mediterranean Conference: Mathematics Education and Applications*. Nicosia, Cyprus: Cyprus Pedagogical Institute and Cyprus Mathematical Society.

Viennot, L. (1985). Analyzing students’ reasoning: Tendencies in interpretation.

*American Journal of Physics*,

*53*, 432–436.

CrossRefVosniadou, S. & Ioannides, C. (1998). From conceptual development to science education: A psychological point of view. *International Journal of Science Education*, *20*, 1213–1230.

Vosniadou, S., Ioannides, C., Dimitrakopoulou, A. & Papademetriou, E. (2001). Designing learning environments to promote conceptual change in science.

*Learning and Instruction*,

*11*, 381–420.

CrossRefWandersee, J.H., Mintzes, J.J. & Novak, J.D. (1994). Research on alternative conceptions in science. In D.L. Gabel (Ed.), *Handbook of research on science teaching and learning* (pp. 177–210). New York: Macmillan.

Zazkis, R. (1999). Intuitive rules in number theory: Example of ‘the more of A, the more of B’ rule implementation.

*Educational Studies in Mathematics*,

*40*, 197–209.

CrossRef