Teachers’ Initial Orchestration of Students’ Dynamic Geometry Software Use: Consequences for Students’ Opportunities to Learn Mathematics
 Ingvald Erfjord
 … show all 1 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
This paper reports from a case study with teachers at two schools in Norway participating in developmental projects aiming for inquiry communities in mathematics teaching and learning. In the reported case study, the teachers participated in one of the developmental projects focusing on implementation and use of computer software in mathematics teaching. I study teachers’ initial orchestration of dynamic geometry software (DGS) in mathematics teaching at lower secondary school. By utilising the notion of ‘instrumental orchestration’ from the theoretical perspective known as the ‘instrumental approach’ (Drijvers et al., in Educ Stud Math 75:213–234, 2010; Trouche, in Int J Comput Math Learn 9:281–307, 2004), I examine how teachers in their initial teaching with DGS empower students’ mathematics learning with the DGS software. According to this perspective, it involves teachers’ orchestration of two interrelated processes instrumentation and instrumentalisation. Analytical findings indicate that a difference in teachers’ empowerment is evident and consequences for students’ opportunities to engage with mathematics represented by the DGS are presented.
 Arcavi, A., & Hadas, N. (2000). Computer mediated learning: An example of an approach. International Journal of Computers for Mathematical Learning, 5, 25–45. CrossRef
 Artigue, M. (2007). Digital technologies: A window on theoretical issues in mathematics education. In D. PittaPantazi & G. Philippou (Eds.), Proceedings of the fifth conference of the European society for research in mathematics education (pp. 68–82). Larnaca, Cyprus: University of Cyprus.
 Berry, J. S., Graham, T., Honey, S., & Headlam, C. (2007). A case study of the issues arising when teachers adopt the use of a new form of technology in their teaching for the first time. The International Journal for Technology in Mathematics Education, 14, 150–160.
 Bjuland, R., & Jaworski, B. (2009). Teachers’ perspectives on collaboration with didacticians to create an inquiry community. Research in Mathematics Education, 11, 21–38. CrossRef
 Bretscher, N. (2010). Dynamic geometry software: The teacher’s role in facilitating instrumental genesis. In V. DurandGuerrier, S. SouryLavergne, & F. Arzarello (Eds.), Proceedings of the sixth conference of the European society for research in mathematics education (pp. 1340–1348). Lyon: INRP.
 Bueie, H. (n.d.). Innføring i Cabri. In http://www.matematikk.org/ . Retrieved April 13, 2011, from http://www.matematikk.org/_voksne/uopplegg/vis.html?tid=66132#
 Chevallard, Y. (2007). Readjusting didactics to a changing epistemology. European Educational Research Journal, 6, 131–134. CrossRef
 Crisan, C., Lerman, S., & Winbourne, P. (2007). Mathematics and ICT: A framework for conceptualising secondary school mathematics teachers’ classroom practices. Technology, Pedagogy and Education, 16, 21–39. CrossRef
 Dörfler, W. (1993). Computer use and views of the mind. In C. Keitel & K. Ruthven (Eds.), Learning from computers: Mathematics education and technology (pp. 159–186). Berlin: SpringerVerlag.
 Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The teacher and the tool: instrumental orchestrations in the technologyrich mathematics classroom. Educational Studies in Mathematics, 75, 213–234. CrossRef
 Erfjord, I. (2008). Teachers’ implementation and orchestration of Cabriuse in mathematics teaching. Doctoral thesis in mathematics didactics, University of Agder, Kristiansand, Norway.
 Freudenthal, H. (1991). Revisiting mathematics education: China lectures. Dordrecht: Kluwer Academic Publishers.
 Goos, M., Galbraith, P., Renshaw, P., & Geiger, V. (2003). Perspectives on technology mediated learning in secondary school mathematics classrooms. The Journal of Mathematical Behavior, 22, 73–89. CrossRef
 Goos, M., & SouryLavergne, S. (2009). Teachers and teaching: theoretical perspectives and issues concerning classroom implementation. In C. Hoyles & J.B. Lagrange (Eds.), Mathematics education and technology—rethinking the Terrain. The 17th ICMI study (pp. 311–328). New York: Springer. CrossRef
 Hagness, R., & Veiteberg, J. (1999). The Curriculum for the 10year compulsory school in Norway. Oslo, Norway: National Centre for Educational Resources.
 Hals, S. (2010). IKT i matematikkopplæringen–tidstjuv eller tryllemiddel? En studie av faktorer som kan påvirke bruken av IKT generelt og GeoGebra spesielt, hos lærere og elever på 10. og 11. årstrinn. Master thesis in mathematics didactics, University of Agder, Kristiansand, Norway.
 Haspekian, M. (2005). An instrumental approach to study the integration of a computer tool into mathematics teaching: The case of spreadsheets. International Journal of Computers for Mathematical Learning, 10, 109–141. CrossRef
 Hennessy, S., Ruthven, K., & Brindley, S. (2005). Teacher perspectives on integrating ICT into subject teaching: Commitment, constraints, caution, and change. Journal of Curriculum Studies, 37, 155–192. CrossRef
 Kasten, S. E., & Sinclair, N. (2009). Using dynamic geometry software in the mathematics classroom: A study of teachers’ choices and rationales. The International Journal for Technology in Mathematics Education, 16, 133–143.
 KD. (2006). Læreplanverket for Kunnskapsløftet (English version available and retrieved August 20, 2010 from http://www.udir.no/Tema/InEnglish/CurriculuminEnglish/ ). Oslo, Norway: Utdanningsdirektoratet.
 Kieran, C., & Drijvers, P. (2006). The coemergence of machine techniques, paperandpencil techniques, and theoretical reflection: A study of CAS use in secondary school algebra. International Journal of Computers for Mathematical Learning, 11, 205–226. CrossRef
 Laborde, C. (2001). Integration of technology in the design of geometry tasks with CabriGeometry. International Journal of Computers for Mathematical Learning, 6, 283–318. CrossRef
 Laborde, C., Kynigos, C., Hollebrands, K., & Strässer, R. (2006). Teaching and learning geometry with technology. In A. Gutierrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future (pp. 275–304). Rotterdam: Sense.
 Lagrange, J.B. (2005). Curriculum, classroom practices, and tool design in the learning of functions through technologyaided experimental approaches. International Journal of Computers for Mathematical Learning, 10, 143–189. CrossRef
 Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge: Cambridge University Press.
 Long, J. B. (1987). Cognitive ergonomics and humancomputer interaction. In P. Warr (Ed.), Psychology at work (Third ed. ed., pp. 73–95). Harmondsworth: Penguin.
 Monaghan, J. (2001). Teachers’ classroom interaction in ICTbased mathematics lessons. In M. van den HeuvelPanhuizen (Ed.), Proceedings of the 25th international conference for the psychology of mathematics education (pp. 3383–3390). Utrecht: Freudenthal institute.
 Monaghan, J. (2004). Teachers’ activities in technologybased mathematics lessons. International Journal of Computers for Mathematical Learning, 9, 327–357. CrossRef
 Monaghan, J. (2007). Computer algebra, instrumentation and the anthropological approach. The International Journal for Technology in Mathematics Education, 14, 63–71.
 Rabardel, P. (2002). People and technology, a cognitive approach to contemporary instruments. Retrieved August 20, 2010 from http://ergoserv.psy.univparis8.fr/Site/default.asp?Act_group=1.
 Trouche, L. (2003). From artifact to instrument: Mathematics teaching mediated by symbolic calculators. Interacting with Computers: The Interdisciplinary Journal of HumanComputer Interaction, 15, 783–800.
 Trouche, L. (2004). Managing the complexity of human/machine interactions in computerized learning environments: Guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9, 281–307. CrossRef
 Trouche, L., & Drijvers, P. (2010). Handheld technology for mathematics education: Flashback into the future. ZDM: The International Journal on Mathematics Education, 42, 667–681. CrossRef
 Vérillon, P., & Rabardel, P. (1995). Cognition and artefact: A contribution to the study of thought in relation to instrumented activity. European Journal of Psychology of Education, 10, 77–101. CrossRef
 Villarreal, M. E., Esteley, C. B., & Mina, M. V. (2010). Modeling empowered by information and communication technologies. ZDM: The International Journal on Mathematics Education, 42, 405–419. CrossRef
 Wagner, J. (1997). The unavoidable intervention of educational research: A framework for reconsidering researchpractitioner cooperation. Educational Researcher, 26, 13–22.
 Wells, G. (1999). Dialogic inquiry: Towards a sociocultural practice and theory of education. Cambridge, MA: Cambridge University Press. CrossRef
 Title
 Teachers’ Initial Orchestration of Students’ Dynamic Geometry Software Use: Consequences for Students’ Opportunities to Learn Mathematics
 Journal

Technology, Knowledge and Learning
Volume 16, Issue 1 , pp 3554
 Cover Date
 20110401
 DOI
 10.1007/s107580119176z
 Print ISSN
 22111662
 Online ISSN
 15731766
 Publisher
 Springer Netherlands
 Additional Links
 Topics
 Keywords

 Dynamic geometry software
 Instrumental orchestration
 Instrumentalisation
 Instrumentation
 New tool for teachers
 Authors

 Ingvald Erfjord ^{(1)}
 Author Affiliations

 1. University of Agder (UiA), Kristiansand, Norway