Skip to main content

Advertisement

Log in

Comparison of the Anti-inflammatory Effects of Proanthocyanidin, Quercetin, and Damnacanthal on Benzo(a)pyrene Exposed A549 Alveolar Cell Line

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Phytochemical compounds are emerging as a new group of anti-inflammatory, antioxidant, and anti-cancer agents that help minimize toxicity in patients with pulmonary diseases. The goal of this study was to investigate the potential curative effects of Quercetin (QC), Damnacanthal (DAM), and Proanthocyanidine (PA) on inflammatory mediators and oxidative stress parameters and to examine the viability of the A549 cell line treated with benzo(a)pyrene (BaP) in vitro. The A549 cell line was treated with BaP, a BaP/QC combination, a BaP/DAM combination, and BaP/PA combination. Inflammatory markers, oxidative stress parameters, mRNA expression levels of apoptotic and antiapoptotic proteins, and cell viability were assessed, and the results were compared. There were higher levels of lactate dehydrogenase after BaP treatment of A549 cell lines. Interferon-γ level significantly decreased in the QC, DAM, and PA-treated group (P < 0.001). IL-1β and TNF-α levels significantly decreased after PA and QC treatments (P < 0.001). Some of the oxidative stress markers (NO, MDA, TOS) and OSI decreased, while antioxidant (GSH) levels increased after treatment with QC, DAM, and PA. The QC and DAM treatments profoundly upregulated apoptotic gene expression and downregulated antiapoptotic gene expression. Viability of QC, DAM, and PA-treated cells was found to be significantly higher in comparison to the control and BaP-treated groups (p < 0.001). Our results revealed that A549 cell lines treated with BaP-stimulated necrosis produced higher level of inflammatory cytokines and oxidative stress parameters. Treatments with PA, QC, and DAM reduced inflammatory response induced by BaP exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jiang, Y., K. Rao, G. Yang, X. Chen, Q. Wang, A. Liu, et al. 2012. Benzo(a)pyrene induces p73 mRNA expression and necrosis in human lung adenocarcinoma H1299 cells. Environmental Toxicology 27: 202–10.

    Article  CAS  PubMed  Google Scholar 

  2. Min, L., S. He, Q. Chen, F. Peng, H. Peng, and M. Xie. 2011. Comparative proteomic analysis of cellular response of human airway epithelial cells (A549) to benzo(a)pyrene. Toxicology Mechanisms and Methods 21: 374–82.

    Article  CAS  PubMed  Google Scholar 

  3. Anandakumar, P., S. Kamaraj, S. Jagan, G. Ramakrishnan, S. Asokkumar, C. Naveenkumar, et al. 2012. Capsaicin inhibits benzo(a)pyrene-induced lung carcinogenesis in an in vivo mouse model. Inflammation Research 61: 1169–75.

    Article  CAS  PubMed  Google Scholar 

  4. Borm, P.J., A.M. Knaapen, R.P. Schins, R.W. Godschalk, and F.J. Schooten. 1997. Neutrophils amplify the formation of DNA adducts by benzo[a]pyrene in lung target cells. Environmental Health Perspectives 105: 1089–93.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rubin, H. 2001. Synergistic mechanisms in carcinogenesis by polycyclic aromatic hydrocarbons and by tobacco smoke: a bio-historical perspective with updates. Carcinogenesis 22: 1903–30.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, Z., Y. Qi, Q. Chen, D. Yang, S. Tang, X. Jin, et al. 2009. Cyclin A is essential for the p53-modulated inhibition from benzo(a)pyrene toxicity in A549 cells. Toxicology 256: 1–6.

    Article  CAS  PubMed  Google Scholar 

  7. Kamaraj, S., R. Vinodhkumar, P. Anandakumar, S. Jagan, G. Ramakrishnan, and T. Devaki. 2007. The effects of quercetin on antioxidant status and tumor markers in the lung and serum of mice treated with benzo(a)pyrene. Biological and Pharmaceutical Bulletin 30: 2268–73.

    Article  CAS  PubMed  Google Scholar 

  8. Kim, H., J.Y. Kim, H.S. Song, K.U. Park, K.C. Mun, and E. Ha. 2011. Grape seed proanthocyanidin extract inhibits interleukin-17-induced interleukin-6 production via MAPK pathway in human pulmonary epithelial cells. Naunyn-Schmiedeberg’s Archives of Pharmacology 383: 555–62.

    Article  CAS  PubMed  Google Scholar 

  9. Lin, F.L., J.L. Hsu, C.H. Chou, W.J. Wu, C.I. Chang, and H.J. Liu. 2011. Activation of p38 MAPK by damnacanthal mediates apoptosis in SKHep 1 cells through the DR5/TRAIL and TNFR1/TNF-α and p53 pathways. European Journal of Pharmacology 650: 120–9.

    Article  CAS  PubMed  Google Scholar 

  10. Ulasli, S.S., S. Celik, E. Gunay, M. Ozdemir, O. Hazman, A. Ozyurek, et al. 2013. Anticancer effects of thymoquinone, caffeic acid phenethyl ester and resveratrol on A549 non-small cell lung cancer cells exposed to benzo(a)pyrene. Asian Pacific Journal of Cancer Prevention 14: 6159–64.

    Article  PubMed  Google Scholar 

  11. Woo, H.D., B.M. Kim, Y.J. Kim, Y.J. Lee, S.J. Kang, Y.H. Cho, et al. 2008. Quercetin prevents necrotic cell death induced by co-exposure to benzo(a)pyrene and UVA radiation. Toxicology In Vitro 22: 1840–5.

    Article  CAS  PubMed  Google Scholar 

  12. Nualsanit, T., P. Rojanapanthu, W. Gritsanapan, S.H. Lee, D. Lawson, and S.J. Baek. 2012. Damnacanthal, a noni component, exhibits antitumorigenic activity in human colorectal cancer cells. Journal of Nutrition and Biochemistry 23: 915–23.

    Article  CAS  Google Scholar 

  13. Bradford, M.M. 1976. A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–54.

    Article  CAS  PubMed  Google Scholar 

  14. Miranda, K.M., M.G. Espey, and D.A. Wink. 2001. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5: 62–71.

    Article  CAS  PubMed  Google Scholar 

  15. Buetler, E., O. Dubon, and B.M. Kelly. 1963. Improved method for the determination of blood glutathione. Journal of Laboratory and Clinical Medicine 61: 882–8.

    Google Scholar 

  16. Yoshioka, T., K. Kawada, T. Shimada, and M. Mori. 1979. Lipid peroxidation in maternal and cord blood and protective mechanisms against activated-oxygen toxicity in the blood. American Journal of Obstetrics and Gynecology 135: 372–5.

    CAS  PubMed  Google Scholar 

  17. Erel, O. 2005. A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry 38: 1103–11.

    Article  CAS  PubMed  Google Scholar 

  18. Erel, O. 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry 37: 277–85.

    Article  CAS  PubMed  Google Scholar 

  19. Esen, C., B.A. Alkan, M. Kırnap, O. Akgül, S. Işıkoğlu, and O. Erel. 2012. The effects of chronic periodontitis and rheumatoid arthritis on serum and gingival crevicular fluid total antioxidant/oxidant status and oxidative stress index. Journal of Periodontology 83: 773–9.

    Article  PubMed  Google Scholar 

  20. Piccardo, M.T., A. Stella, and F. Valerio. 2010. Is the smokers exposure to environmental tobacco smoke negligible? Environmental Health 9: 5.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Qamar, W., R. Khan, A.Q. Khan, M.U. Rehman, A. Lateef, M. Tahir, et al. 2012. Alleviation of lung injury by glycyrrhizic acid in benzo(a)pyrene exposed rats: probable role of soluble epoxide hydrolase and thioredoxin reductase. Toxicology 291: 25–31.

    Article  CAS  PubMed  Google Scholar 

  22. Podechard, N., V. Lecureur, E. Le Ferrec, I. Guenon, L. Sparfel, D. Gilot, et al. 2008. Interleukin-8 induction by the environmental contaminant benzo(a)pyrene is aryl hydrocarbon receptor-dependent and leads to lung inflammation. Toxicology Letters 177: 130–7.

    Article  CAS  PubMed  Google Scholar 

  23. Xie, J.G., Y.J. Xu, Z.X. Zhang, W. Ni, and S.X. Chen. 2004. Smoking, the level of DNA adducts and chronic obstructive pulmonary diseases. Zhonghua Jie He He Hu Xi Za Zhi 27: 469–73.

    PubMed  Google Scholar 

  24. Lin, T., and M.S. Yang. 2007. Benzo[a]pyrene-induced elevation of GSH level protects against oxidative stress and enhances xenobiotic detoxification in human HepG2 cells. Toxicology 235: 1–10.

    Article  CAS  PubMed  Google Scholar 

  25. Hung, H. 2007. Dietary quercetin inhibits proliferation of lung carcinoma cells. Forum of Nutrition 60: 146–57.

    Article  CAS  PubMed  Google Scholar 

  26. Formica, J.V., and W. Regelson. 1995. Review of the biology of quercetin and related bioflavonoids. Food and Chemical Toxicology 33: 1061–80.

    Article  CAS  PubMed  Google Scholar 

  27. Hayashi, Y., M. Matsushima, T. Nakamura, M. Shibasaki, N. Hashimoto, K. Imaizumi, et al. 2012. Quercetin protects against pulmonary oxidant stress via heme oxygenase-1 induction in lung epithelial cells. Biochemical and Biophysical Research Communications 417: 169–74.

    Article  CAS  PubMed  Google Scholar 

  28. Park, H.K., S.J. Kim, Y. Kwon do, J.H. Park, and Y.C. Kim. 2010. Protective effect of quercetin against paraquat-induced lung injury in rats. Life Sciences 87: 181–6.

    Article  CAS  PubMed  Google Scholar 

  29. Taslidere, E., M. Esrefoglu, H. Elbe, A. Cetin, and B. Ates. 2014. Protective effects of melatonin and quercetin on experimental lung injury induced by carbon tetrachloride in rats. Experimental Lung Research 40: 59–65.

    Article  CAS  PubMed  Google Scholar 

  30. Terao, J., and M.K. Piskula. 1999. Flavonoids and membrane lipid peroxidation inhibition. Nutrition 15: 790–1.

    Article  CAS  PubMed  Google Scholar 

  31. Verma, R., L. Kushwah, D. Gohel, M. Patel, T. Marvania, and S. Balakrishnan. 2013. Evaluating the ameliorative potential of quercetin against the bleomycin-induced pulmonary fibrosis in Wistar rats. Pulmonary Medicine 2013: 921724.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yamagishi, M., M. Natsume, N. Osakabe, K. Okazaki, F. Furukawa, T. Imazawa, et al. 2003. Chemoprevention of lung carcinogenesis by cacao liquor proanthocyanidins in a male rat multi-organ carcinogenesis model. Cancer Letters 191: 49–57.

    Article  CAS  PubMed  Google Scholar 

  33. Song, X., N. Siriwardhana, K. Rathore, D. Lin, and H.C. Wang. 2010. Grape seed proanthocyanidin suppression of breast cell carcinogenesis induced by chronic exposure to combined 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene. Molecular Carcinogenesis 49: 450–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Agackiran, Y., H. Gul, E. Gunay, N. Akyurek, L. Memis, S. Gunay, et al. 2012. The efficiency of proanthocyanidin in an experimental pulmonary fibrosis model: comparison with taurine. Inflammation 35: 1402–10.

    Article  CAS  PubMed  Google Scholar 

  35. Anekpankul, T., M. Goto, M. Sasaki, P. Pavasanta, and A. Shotipruk. 2007. Extraction of anti-cancer damnacanthal from roots of Morinda citrifolia by subcritical water. Separation and Purification Technology 55: 343–9.

    Article  CAS  Google Scholar 

  36. Taşkin, E.I., K. Akgün-Dar, A. Kapucu, E. Osanç, H. Doğruman, H. Eraltan, et al. 2009. Apoptosis-inducing effects of Morinda citrifolia L. and doxorubicin on the Ehrlich ascites tumor in Balb-c mice. Cell Biochemistry and Function 27: 542–6.

    Article  PubMed  Google Scholar 

  37. Nualsanit, T., P. Rojanapanthu, W. Gritsanapan, T. Kwankitpraniti, K.W. Min, and S.J. Baek. 2011. Damnacanthal-induced anti-inflammation is associated with inhibition of NF-κB activity. Inflammation & Allergy Drug Targets 10: 455–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Emma Hickey for English Editing of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ersin Günay.

Ethics declarations

Disclosures

This project was supported by a grant from Kocatepe University Scientific Research Council, Afyonkarahisar, Turkey: Project number: 12.TIP.01.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Günay, E., Celik, S., Sarinc-Ulasli, S. et al. Comparison of the Anti-inflammatory Effects of Proanthocyanidin, Quercetin, and Damnacanthal on Benzo(a)pyrene Exposed A549 Alveolar Cell Line. Inflammation 39, 744–751 (2016). https://doi.org/10.1007/s10753-015-0301-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0301-3

KEY WORDS

Navigation