Skip to main content
Log in

Farnesyltransferase Inhibitor Manumycin Targets IL1β-Ras-HIF-1α Axis in Tumor Cells of Diverse Origin

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

We have recently reported that Ras acts as an intermediate coactivator in IL-1β-mediated hypoxia-inducible factor-1α (HIF-1α) activation in glioblastoma multiforme (GBM). Since HIF-1α plays a crucial role in linking inflammatory and oncogenic pathways, we investigated whether this IL1β-Ras-HIF-1α signaling axis observed in GBM also exists in other tumors of diverse origin under normoxia. Treatment with IL-1β induced Ras in non-GBM cell lines A549 (lung), HeLa (cervical), and HepG2 (liver), and inhibition of Ras activity attenuated HIF-1α activity. Our findings suggest that Ras links IL-1β and HIF-1α in tumors of diverse origin. As we have previously reported that the farnesyltransferase inhibitor manumycin decreases Ras activity in glioma cells, we investigated whether manumycin could regulate IL-1β-mediated HIF-1α activation. Manumycin abrogated IL-1β-induced HIF-1α activation in both glioma and non-glioma tumor cells. In addition, manumycin also decreased IL-1β induced pro-inflammatory responses in tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Rankin, E.B., and A.J. Giaccia. 2008. The role of hypoxia-inducible factors in tumorigenesis. Cell Death and Differentiation 15(4): 678–685.

    Article  PubMed  CAS  Google Scholar 

  2. Semenza, G.L. 2010. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29(5): 625–634.

    Article  PubMed  CAS  Google Scholar 

  3. Iyer, N.V., L.E. Kotch, F. Agani, S.W. Leung, E. Laughner, R.H. Wenger, M. Gassmann, J.D. Gearhart, A.M. Lawler, A.Y. Yu, et al. 1998. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes & Development 12(2): 149–162.

    Article  CAS  Google Scholar 

  4. Hellwig-Burgel, T., K. Rutkowski, E. Metzen, J. Fandrey, and W. Jelkmann. 1999. Interleukin-1beta and tumor necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood 94(5): 1561–1567.

    PubMed  CAS  Google Scholar 

  5. Jung, Y.J., J.S. Isaacs, S. Lee, J. Trepel, and L. Neckers. 2003. IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. The FASEB Journal 17(14): 2115–2117.

    CAS  Google Scholar 

  6. Elaraj, D.M., D.M. Weinreich, S. Varghese, M. Puhlmann, S.M. Hewitt, N.M. Carroll, E.D. Feldman, E.M. Turner, and H.R. Alexander. 2006. The role of interleukin 1 in growth and metastasis of human cancer xenografts. Clinical Cancer Research 12(4): 1088–1096.

    Article  PubMed  CAS  Google Scholar 

  7. Sharma, V., D. Dixit, N. Koul, V.S. Mehta, and E. Sen. 2011. Ras regulates interleukin-1beta-induced HIF-1alpha transcriptional activity in glioblastoma. Journal of Molecular Medicine (Berlin, Germany) 89(2): 123–36.

    Article  CAS  Google Scholar 

  8. Voronov, E., D.S. Shouval, Y. Krelin, E. Cagnano, D. Benharroch, Y. Iwakura, C.A. Dinarello, and R.N. Apte. 2003. IL-1 is required for tumor invasiveness and angiogenesis. Proceedings of the National Academy of Sciences of the United States of America 100(5): 2645–2650.

    Article  PubMed  CAS  Google Scholar 

  9. Kaluz, S., and E.G. Van Meir. 2011. At the crossroads of cancer and inflammation: Ras rewires an HIF-driven IL-1 autocrine loop. Journal of molecular medicine (Berlin, Germany) 89(2): 91–94.

    Article  Google Scholar 

  10. Semenza, G.L. 2003. Targeting HIF-1 for cancer therapy. Nature Reviews Cancer 3(10): 721–732.

    Article  PubMed  CAS  Google Scholar 

  11. Dixit, D., V. Sharma, S. Ghosh, N. Koul, P.K. Mishra, and E. Sen. 2009. Manumycin inhibits STAT3, telomerase activity and growth of glioma cells by elevating intracellular reactive oxygen species generation. Free Radical Biology & Medicine 47(4): 364–374.

    Article  CAS  Google Scholar 

  12. Tormos, K.V., and N.S. Chandel. 2010. Inter-connection between mitochondria and HIFs. Journal of Cellular and Molecular Medicine 14(4): 795–804.

    Article  PubMed  CAS  Google Scholar 

  13. Blum, R., J. Jacob-Hirsch, N. Amariglio, G. Rechavi, and Y. Kloog. 2005. Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. Cancer Research 65(3): 999–1006.

    PubMed  CAS  Google Scholar 

  14. Pan, J., M. She, Z.X. Xu, L. Sun, and S.C. Yeung. 2005. Farnesyltransferase inhibitors induce DNA damage via reactive oxygen species in human cancer cells. Cancer Research 65(9): 3671–3681.

    Article  PubMed  CAS  Google Scholar 

  15. Biswas, S., M.K. Gupta, D. Chattopadhyay, and C.K. Mukhopadhyay. 2007. Insulin-induced activation of hypoxia-inducible factor-1 requires generation of reactive oxygen species by NADPH oxidase. American Journal of Physiology. Heart and Circulatory Physiology 292(2): H758–H766.

    Article  PubMed  CAS  Google Scholar 

  16. Sharma, V., C. Joseph, S. Ghosh, A. Agarwal, M.K. Mishra, and E. Sen. 2007. Kaempferol induces apoptosis in glioblastoma cells through oxidative stress. Molecular Cancer Therapeutics 6(9): 2544–2553.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellora Sen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, V., Shaheen, S.S., Dixit, D. et al. Farnesyltransferase Inhibitor Manumycin Targets IL1β-Ras-HIF-1α Axis in Tumor Cells of Diverse Origin. Inflammation 35, 516–519 (2012). https://doi.org/10.1007/s10753-011-9340-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-011-9340-6

KEY WORDS

Navigation