Skip to main content

Advertisement

Log in

Plant invaders in European and Mediterranean inland waters: profiles, distribution, and threats

  • INVASIVE SPECIES
  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The present brief and selective review focuses on a set of invasive alien aquatic plant species (notably the 21 listed by the European and Mediterranean Plant Protection Organisation, i.e., five A2 species, 11 invasive, 2 in the Observation List, 1 in the Alert List, 2 noteworthy), on definitions in use, on introduction pathways, and ecological effects, although the social and economic effects of freshwater invaders can be diverse and substantial. Legislation, literature, and scientific research dealing with plant invasions in inland waters often merge different types of invasive plant species and invaded habitats, as there are some overlappings between the concepts of macrophyte, aquatic plants, inland waters, wetlands, and riparian habitats. Freshwater ecosystems may well be the most endangered ecosystems in the world. Countless aquatic plants have been introduced in Europe and in the Mediterranean region, either deliberately because they were thought to be ornamental or otherwise desirable, or accidentally as releases from aquaria, dumping from water gardens, or contaminants. The escape of alien plants from managed environments is also frequent. Aquatic invaders have strong negative impacts on native biodiversity and many different impacts are reported in the literature for Europe and worldwide. Plant invasions in inland waters may be considered as one of a syndrome of factors that characterize degraded aquatic ecosystems. There are a number of risk analysis, impact assessment, ranking systems, decision trees, and prioritization methods available throughout Europe and the EPPO region, but the lack of a common framework for assessing the risks posed by invasive alien aquatic species is seen as a key gap. Successful management should include prevention, habitat restoration, dedicated risk assessment, prioritization, awareness raising, dedicated legislation, collaboration between different stakeholders, development of codes of conduct with the horticultural sector, and prohibiting the sale, purchase, and intentional release of some species in the wild. Actions to protect the European and Mediterranean inland waters from plants invasions are urgently needed and could provide overarching benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. EPPO data sheets and PRA available at: https://www.eppo.int/INVASIVE_PLANTS/ias_lists.htm.

  2. B1.8 = moist and wet dune slacks; C1 = surface standing waters; C2 = surface running waters; C3 = littoral zone of inland surface waterbodies; D1 = raised and blanket bogs; D2 = valley mires, poor fens and transition mires: D3 = Aapa, palsa and polygon mires; D4 = base-rich fens and calcareous spring mires; D5 = sedge and reedbeds, normally without free-standing water; D6 = inland saline and brackish marshes and reedbeds; E3 = seasonally wet and wet grasslands; F9 = riverine and fen scrubs; F9.35 = Riparian stands of invasive shrubs; G1 = Broadleaved deciduous woodland (e.g., G1.1 = Riparian and gallery woodland, with dominant [Alnus], [Betula], [Populus] or [Salix]); G3 = Coniferous woodland: G4 = mixed deciduous and coniferous woodland; I1 = arable land and market gardens; I1.4 = Lava tubes; J5 = highly artificial man-made waters and associated structures; X01 = estuaries; X02 = saline coastal lagoons; X03 = brackish coastal lagoons; X04 = raised bog complexes.

  3. Luther (1949), according to the mode of attachment distinguishes the following types: haptophytes, rhizophytes, and pleustophyets. Acropleustophytes are pleustophytes which float on the surface.

  4. Stratiotids s.l. EUPHRESCO DeCLAIM – EUPHRESCO DeCLAIM—a decision-support system for management of invasive aquatic macrophytes (see Newman, 2010).

  5. See above Luther (1949).

  6. The IPPC is deposited with and administered through the Food and Agriculture Organization of the United Nations (FAO).

  7. The PRA process provides a technical tool for identifying appropriate phytosanitary measures. It consists of three stages: (i) initiation; (ii) pest risk assessment; and (iii) pest risk management. PRA is applied to pests of cultivated plants and wild flora in accordance with the scope of the IPPC. ISPM 11 has been revised to take account of the threats to biodiversity from IAS that are plant pests, including aquatic plants. See also FAO (2007).

  8. Information initially aquired in the EPPO PRA from Spanish managers.

  9. EUPHRESCO DeCLAIM Final report. A State-of-the-art June 2011. Cabomba caroliniana Gray. Plant Protection Service. Aquatic Ecology and Water Quality Management Group, Wageningen UR. Centre for Ecology and Hydrology, Wallingford, UK, 54 pp. [http://www.q-bank.eu/Plants/Controlsheets/Cabomba_State-of-the-Art.pdf]. Accessed 15 April 2014.

  10. Decision XI/23, Biological diversity of inland water ecosystems [https://www.cbd.int/decisions/cop/?m=cop-11] Accessed 15 November 2013.

References

  • Abell, R., M. L. Thieme, C. Revenga, M. Bryer, M. Kottelat, N. Bogutskaya, B. Coad, N. Mandrak, S. Contreras Balderas, W. Bussing, M. L. J. Stiassny, P. Skelton, G. A. Allen, P. Unmack, A. Naseka, R. Ng, N. Sindorf, J. Robertson, E. Armijo, J. V. Higgins, T. J. Heibel, E. Wikramanayake, D. Olson, H. L. López, R. E. Reis, J. G. Lundberg, M. H. Sabaj Pérez & P. Petry, 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58: 403–414.

    Google Scholar 

  • Abell, R., M. L. Thieme, T. H. Ricketts, N. Olwero, R. Ng, P. Petry, E. Dinerstein, C. Revenga & J. Hoekstra, 2010. Concordance of freshwater and terrestrial biodiversity. Conservation Letters 4: 127–136.

    Google Scholar 

  • Abellán, P., D. Sánchez-Fernández, J. Velasco & A. Millán, 2007. Effectiveness of protected area networks in representing freshwater biodiversity: the case of a Mediterranean river basin (south-eastern Spain). Aquatic Conservation: Marine and Freshwater Ecosystems 17: 361–374.

    Google Scholar 

  • Aguiar, F. C. F. & M. T. Ferreira, 2013. Plant invasions in the rivers of the Iberian Peninsula, south-western Europe: a review. Plant Biosystems 147: 1107–1119.

    Google Scholar 

  • Alahuhta, J., A. Kanninen, S. Hellsten, K.-M. Vuori, M. Kuoppala & H. Hämäläinen, 2013. Variable response of functional macrophyte groups to lake characteristics, land use, and space: implications for bioassessment. Hydrobiologia. doi:10.1007/s10750-013-1722-3.

    Google Scholar 

  • Ali, M. M. & M. A. Soltan, 2006. Expansion of Myriophyllum spicatum (Eurasian water milfoil) into Lake Nasser, Egypt: invasive capacity and habitat stability. Aquatic Botany 84: 239–244.

    Google Scholar 

  • Andres, L. A. & F. D. Bennett, 1975. Biological control of aquatic weeds. Annual Review of Entomology 20: 31–46.

    Google Scholar 

  • Andreu, J. & M. Vilà, 2010. Risk analysis of potential invasive plants in Spain. Journal for Nature Conservation 18: 34–44.

    Google Scholar 

  • Arber, A., 1920. Water Plants. A Study of Aquatic Angiosperms. Cambridge University Press, Cambridge: I–XVI + 436 pp.

  • Ashton, P. J. & D. S. Mitchell, 1989. Aquatic plants: patterns and modes of invasion, attributes of invading species and assessment of control programmes. In Drake J. A., H. A. Mooney, F. di Castri, R. H. Groves, F. J. Kruger, M. Rejmanek & M. Williamson (eds), Biological Invasions: A Global Perspective. SCOPE 37. Wiley, New York: 111–154.

  • Bagella, S. & M. C. Caria, 2013. Sensitivity of ephemeral wetland swards with Isoetes histrix Bory to environmental variables: implications for the conservation of Mediterranean temporary ponds. Aquatic Conservation: Marine and Freshwater Ecosystems 23: 277–290.

    Google Scholar 

  • Barbaresi, S. & F. Gherardi, 2000. The invasion of the alien crayfish Procambarus clarkii in Europe, with particular reference to Italy. Biological Invasions 2: 259–264.

    Google Scholar 

  • Barrat-Segretain, M.-H., 2001. Invasive species in the Rhone River floodplain (France): replacement of Elodea canadensis Michaux by E. nuttallii St. John in two former river channels. Archiv für Hydrobiologie 152: 237–251.

    Google Scholar 

  • Best, E. P. H. 1988. The phytosociological approach to the description and classification of aquatic macrophytic vegetation. In Symoens, J. J. (ed.), Vegetation of Inland Waters. Handbook of Vegetation Science, Vol. 15-1. Kluwer, Dordrecht: 155–182.

  • Bich, T. T. N. & H. Kato-Noguchi, 2012. Allelopathic potential of two aquatic plants, duckweed (Lemna minor L.) and water lettuce (Pistia stratiotes L.), on terrestrial plant species. Aquatic Botany 103: 30–36.

    Google Scholar 

  • Blackburn, T. M., P. Pyšek, S. Bacher, J. T. Carlton, R. P. Duncan, V. Jarošík, J. R. U. Wilson & D. M. Richardson, 2011. A proposed unified framework for biological invasions. Trends in Ecology and Evolution 26: 333–339.

    PubMed  Google Scholar 

  • Boylen, C. W., L. W. Eichler & J. D. Madsen, 1999. Loss of native aquatic plant species in a community dominated by Eurasian watermilfoil. Hydrobiologia 415: 207–211.

    Google Scholar 

  • Brochet, A.-L., M. Guillemain, H. Fritz, M. Gauthier-Clerc & A. J. Green, 2009. The role of migratory ducks in the long-distance dispersal of native plants and the spread of exotic plants in Europe. Ecography 32: 919–928.

    Google Scholar 

  • Brundu, G., A. Stinca, L. Angius, G. Bonanomi, L. Celesti-Grapow, G. D’Auria, R. Griffo, A. Migliozzi, R. Motti & P. Spigno, 2012. Pistia stratiotes L. and Eichhornia crassipes (Mart.) Solms.: emerging invasive alien hydrophytes in Campania and Sardinia (Italy). EPPO Bulletin 42: 568–579.

    Google Scholar 

  • Brundu, G., M. M. Azzella, C. Blasi, I. Camarda, M. Iberite & L. Celesti-Grapow, 2013. The silent invasion of Eichhornia crassipes (Mart.) Solms. in Italy. Plant Biosystems 147: 1120–1127.

    Google Scholar 

  • Brunel, S., 2010. Pathway analysis: aquatic plants imported in 10 EPPO countries. EPPO Bulletin 39: 201–213.

    Google Scholar 

  • Brunel, S., E. Branquart, G. Fried, J. Van Valkenburg, G. Brundu, U. Starfinger, S. Buholzer, A. Uludag, M. Joseffson & R. Baker, 2010. The EPPO prioritization process for invasive alien plants. EPPO Bulletin 40: 407–422.

    Google Scholar 

  • Brunel, S., G. Brundu & G. Fried, 2013a. Eradication and control of invasive alien plants in the Mediterranean Basin: towards better coordination to enhance existing initiatives. EPPO Bulletin 43: 290–308.

    Google Scholar 

  • Brunel, S., M. Suffert, F. Petter & R. Baker, 2013b. Interface between pest risk science and policy: the EPPO perspective. NeoBiota 18: 9–23.

    Google Scholar 

  • Caffrey, J. M., M. Millane, S. Evers, H. Moran & M. Butler, 2010. A novel approach to aquatic weed control and habitat restoration using biodegradable jute matting. Aquatic Invasions 5: 123–129.

    Google Scholar 

  • Carreira, B. M., M. P. Dias & R. Rebelo, 2014. How consumption and fragmentation of macrophytes by the invasive crayfish Procambarus clarkii shape the macrophyte communities of temporary ponds. Hydrobiologia 721: 89–98.

    CAS  Google Scholar 

  • Chambers, P. A., P. Lacoul, K. J. Murphy & S. M. Thomaz, 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595: 9–26.

    Google Scholar 

  • Champion, P. D. & J. S. Clayton, 2000. Border Control for Potential Aquatic Weeds. Stage 1. Weed Risk Model. Science for Conservation 141. Department of Conservation, Wellington, New Zealand: 48 pp.

  • Champion, P. D. & J. S. Clayton, 2001. A weed risk assessment model for aquatic weeds in New Zealand. In Groves, R. H., F. D. Panetta & J. G. Virtue (eds), Weed Risk Assessment. CSIRO Publishing, Collingwood, VIC: 194–202.

    Google Scholar 

  • Champion, P. D. & J. S. Clayton, 2010. Assessing the risk posed to Micronesia by invasive aquatic weeds. NIWA Client Report, Hamilton: 60 pp.

  • Champion, P. D., D. A. Burnett & A. Petroeschevsky, 2008. Risk Assessment of Tradable Aquatic Plant Species in Australia. NIWA, O’Connor, WA.

    Google Scholar 

  • Champion, P. D., D. E. Hofstra & J. S. Clayton, 2010. Nipping aquatic plant invasions in the bud – weed risk assessment and the trade. Hydrobiologia 656: 167–172.

    Google Scholar 

  • Charles, H. & J. S. Dukes, 2007. Impacts of invasive species on ecosystem services. In Nentwig, W. (ed.), Biological Invasions, Ecological Studies, Vol. 193. Springer, Berlin/Heidelberg: 217–237.

    Google Scholar 

  • Claeson, S. M., C. J. LeRoy, J. R. Barry & K. A. Kuehn, 2013. Impacts of invasive riparian knotweed on litter decomposition, aquatic fungi, and macroinvertebrates. Biological Invasions. doi:10.1007/s10530-013-0589-6.

    Google Scholar 

  • Clement, E. J., 2000. Ludwigia × kentiana E. J. Clement: a new hybrid aquatic. Watsonia 23: 167–172.

    Google Scholar 

  • Collen, B., F. Whitton, E. E. Dyer, J. E. M. Baillie, N. Cumberlidge, W. R. T. Darwall, C. Pollock, N. I. Richman, A.-M. Soulsby & M. Böhm, 2014. Global patterns of freshwater species diversity, threat and endemism. Global Ecology and Biogeography 23: 40–51.

    Google Scholar 

  • Cook, C. D. K., 1990. Seed dispersal of Nymphoides peltata (SG Gmelin) O Kuntze (Menyanthaceae). Aquatic Botany 37: 325–340.

    Google Scholar 

  • Cook, C. D. K. & R. Lüönd, 1982. A revision of the genus Hydrilla (Hydrocharitaceae). Aquatic Botany 13: 485–504.

    Google Scholar 

  • Cook, C. D. K. & K. Urmi-Konig, 1983. A revision of the genus Stratiotes (Hydrocharitaceae). Aquatic Botany 16: 213–249.

    Google Scholar 

  • Council of the European Communities, 2000. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy. Official Journal of the European Communities L327: 1–73.

    Google Scholar 

  • Dandelot, S., C. Robles, N. Pech, A. Cazaubon & R. Verlaque, 2008. Allelopathic potential of two invasive alien Ludwigia spp. Aquatic Botany 88: 311–316.

    Google Scholar 

  • Darwall, W., K. Smith, D. Allen, M. Seddon, G. McGregor Reid, V. Clausnitzer & V. J. Kalkman, 2009. Freshwater biodiversity – a hidden resource under threat. In Vié, J.-C., C. Hilton-Taylor & S. N. Stuart (eds), Wildlife in a Changing World: An Analysis of the 2008 IUCN Red List of Threatened Species. IUCN, Gland, Switzerland: 43–54.

    Google Scholar 

  • Darwin, C. R., 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London.

    Google Scholar 

  • Davies, C. E., D. Moss & M. O. Hill, 2004. EUNIS Habitat Classification, Revised 2004. European Environment Agency, Copenhagen and European Topic Centre on Nature Protection and Biodiversity, Paris.

  • De Bruyn, L., A. Anselin, J. Caesar, G. Spanoghe, G. Van Thuyne, F. Verloove, G. Vermeersch & H. Verreycken, 2007. Uitheemse soorten, In Natuurrapport 2007. Toestand van de natuur in Vlaanderen: cijfers voor het beleid. INBO, Belgium: 109–123.

  • De Vries, W., R. Rannap & L. Briggs, 2012. Guidelines for eradication of invasive alien aquatic species. Project Report “Securing Leucorrhinia pectoralis and Pelobates fuscus in the northern distribution area in Estonia and Denmark” LIFE08NAT/EE/000257. 19 pp. Available at: http://www.keskkonnaamet.ee/public/galleries/dragonlife/Guidelines-for-eradication-of-invasive-alien-aquatic-species.pdf [Accessed 15 December 2013].

  • den Hartog, C. & G. van der Velde, 1988. Structural aspects of aquatic plant communities. In Symoens, J. J. (ed.), Vegetation of Inland Waters. Handbook of Vegetation Science, Vol. 15-1. Kluwer, Dordrecht: 113–153.

  • den Hartog, C. & S. Segal, 1964. A new classification of the waterplant communities. Acta Botanica Neerlandica 13: 367–393.

    Google Scholar 

  • Denny, P., 1985. The Ecology and Management of African Wetland Vegetation. W. Junk, The Hague.

    Google Scholar 

  • Deshpande, P., S. Nair & S. Khedkar, 2009. Water hyacinth as carbon source for the production of cellulase by Trichoderma reesei. Applied Biochemistry and Biotechnology 158: 552–560.

    CAS  PubMed  Google Scholar 

  • Du Rietz, E. G., 1921. Zur methodologischen Grundlage der modernen pflanzensoziologie. Thesis, Uppsala: 272 pp.

  • Du Rietz, E. G., 1930. Vegetationsforschung auf soziationsanalytischer Grundlage. Abderhalden. Handb. biol. Arbeitsmeth. 11: 293–480.

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z.-I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A.-H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.

    PubMed  Google Scholar 

  • EEA, 2012. The impacts of invasive alien species in Europe. EEA Technical Report No. 16/2012. Publications Office of the European Union, Luxembourg. http://www.eea.europa.eu/publications/impacts-of-invasive-alien-species.

  • EPPO, 2008. Data sheets on quarantine pests. Eichhornia crassipes. EPPO Bulletin 38: 441–449.

    Google Scholar 

  • EPPO, 2009. Guidelines on Pest Risk Analysis: Decision-Support Scheme for Quarantine Pests EPPO Standard PM 5/3(2). EPPO, Paris, France.

    Google Scholar 

  • EPPO, 2013. EPPO Lists of Invasive Alien Plants. Available at: http://www.eppo.int/INVASIVE_PLANTS/ias_lists.htm. [Accessed 15 December 2013].

  • FAO, 2007. Framework for pest risk analysis, ISPM 2, FAO, Rome. International Plant Protection Convention website. Available at: https://www.ippc.int/index.php?id=13399&L=0. [Accessed 15 December 2013].

  • Farlow, W. G., 1855. Proceedings of the Botanical Society of Edinburgh for the year 1855, Edinburgh.

  • Figuerola, J. & A. J. Green, 2002. Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshwater Biology 47: 483–494.

    Google Scholar 

  • Fiori, A., 1895. L’Elodea canadensis Mich. nel Veneto e in Italia. Malpighia 9: 119–120.

    Google Scholar 

  • Fitzsimons, R. E. & R. H. Vallejos, 1986. Growth of water hyacinth (Eichhornia crassipes (Mart.) Solms) in the middle Paranti River (Argentina). Hydrobiologia 131: 257–260.

    Google Scholar 

  • Forbes, R. S., 2000. Assessing the status of Stratiotes aloides L. (Water-soldier) in Co., Fermanagh, Northern Ireland (v.c. H33). Watsonia 23: 179–196.

    Google Scholar 

  • Freeland, J., C. Ciotir & H. Kirk, 2013. Regional differences in the abundance of native, introduced, and hybrid Typha spp. in northeastern North America influence wetland invasions. Biological Invasions 15: 2651–2665.

    Google Scholar 

  • Gallardo, B. & D. C. Aldridge, 2013. The ‘dirty dozen’: socio-economic factors amplify the invasion potential of 12 high-risk aquatic invasive species in Great Britain and Ireland. Journal of Applied Ecology 50: 757–766.

    Google Scholar 

  • Gederaas, L., T. L. Moen, S. Skjelseth & L.-K. Larsen, 2012. Alien Species in Norway – With the Norwegian Black List 2012. The Norwegian Biodiversity Information Centre, Norway.

    Google Scholar 

  • Ghahramanzadeh, R., G. Esselink, L. P. Kodde, H. Duistermaat, J. L. C. H. van Valkenburg, S. H. Marashi, M. J. M. Smulders & C. C. M. van de Wiel, 2013. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding. Molecular Ecology Resources 13: 21–31.

    CAS  PubMed  Google Scholar 

  • Gherardi, F., S. Bertolino, M. Bodon, S. Casellato, S. Cianfanelli, M. Ferraguti, E. Lori, G. Mura, A. Nocita, N. Riccardi, G. Rossetti, E. Rota, R. Scalera, S. Zerunian & E. Tricarico, 2008. Animal xenodiversity in Italian inland waters: distribution, modes of arrival, and pathways. Biological Invasions 10: 435–454.

    Google Scholar 

  • Gherardi, F., S. Gollasch, D. Minchin, S. Olenin & V. E. Panov, 2009. Alien invertebrates and fish in European inland waters. In DAISIE: Handbook of Alien Species in Europe. Springer, Dordrecht: 81–92.

  • Going, B. M. & T. L. Dudley, 2008. Invasive riparian litter alters aquatic insect growth. Biological Invasions 10: 1041–1051.

    Google Scholar 

  • Golterman, H. L., R. S. Clymo, E. P. H. Best & J. Lauga, 1988. Methods of exploration and analysis of the environment of aquatic vegetation. In Symoens, J. J. (ed.), Vegetation of Inland Waters – Handbook of vegetation Science, Vol. 15-1. Kluwer, Dordrecht: 31–61.

    Google Scholar 

  • Gordon, D. R. & C. A. Gantz, 2011. Risk assessment for invasiveness differs for aquatic and terrestrial plant species. Biological Invasions 13: 1829–1842.

    Google Scholar 

  • Gordon, D. R., D. A. Onderdonk, A. M. Fox & R. K. Stocker, 2008. Accuracy of the Australian Weed Risk Assessment system across varied geographies. Diversity and Distributions 14: 234–242.

    Google Scholar 

  • Gordon, D. R., C. A. Gantz, C. L. Jerde, W. L. Chadderton, R. P. Keller & P. D. Champion, 2012. Weed Risk Assessment for aquatic plants: modification of a New Zealand System for the United States. PLoS One. doi:10.1371/journal.pone.0040031.

    Google Scholar 

  • Gozlan, R. E., 2008. Introduction of non-native freshwater fish: is it all bad? Fish and Fisheries 9: 106–115.

    Google Scholar 

  • Gozlan, R. E., J. R. Britton, I. Cowx & G. H. Copp, 2010. Current knowledge on non-native freshwater fish introductions. Journal of Fish Biology 76: 751–786.

    Google Scholar 

  • Guppy, H. B., 1891-1893. The river Thames as an agent in plant dispersal. Botanical Journal of the Linnean Society 29: 333–346.

    Google Scholar 

  • Gupta, G., 1982. Potential applications of water hyacinth for water, air recycling in closed systems. Water, Air, and Soil Pollution 17: 199–205.

    Google Scholar 

  • Hansen, H. C., 1918. The invasion of a Missouri River alluvial flood plain. The American Midland Naturalist 5: 196–201.

    Google Scholar 

  • Hastings, A., J. E. Byers, J. A. Crooks, K. Cuddington, C. G. Jones, J. G. Lambrinos, T. S. Talley & W. G. Wilson, 2007. Ecosystem engineering in space and time. Ecology Letters 10: 153–164.

    PubMed  Google Scholar 

  • Hejný, S., 1957. Ein beitrag zur ökologischen Gliederung der tschechoslowakischen niederungsgewässer. Preslia 29: 349–368.

    Google Scholar 

  • Hessen, D. O., J. Skurdal & J. E. Braathen, 2004. Plant exclusion of a herbivore; crayfish population decline caused by an invading waterweed. Biological Invasions 6: 133–140.

    Google Scholar 

  • Heywood, V. & S. Sharrock, 2013. European Code of Conduct for Botanic Gardens on Invasive Alien Species. Council of Europe, Strasbourg, Botanic Gardens Conservation International, Richmond: 60 pp.

  • Hintikka, T. J., 1917. Kanadalaisesta vesirutosta ja sen levenemisestä Euroopassa, eritoten Suomessa. Luonnon Ystävä 21: 79–90.

    Google Scholar 

  • Hogeweg, P. & A. L. Brenkert-van Riet, 1969. Affinities between the growth forms in aquatic vegetation. Tropical Ecology 10: 183–194.

    Google Scholar 

  • Hooker, W. J., 1851. Kew Gardens; or a Popular Guide to the Royal Botanical Gardens of Kew, London.

  • Howard, G. W. & K. L. S. Harley, 1998. How do floating aquatic weeds affect wetland conservation and development? How can these effects be minimised? Wetlands Ecology and Management 5: 215–225.

    Google Scholar 

  • Hu, H. & Y. Hong, 2008. Algal-bloom control by allelopathy of aquatic macrophytes – a review. Frontiers of Environmental Science & Engineering 2: 421–438.

    Google Scholar 

  • Huang, P. S., B. P. Han & Z. W. Liu, 2007. Floating-leaved macrophyte (Trapa quadrispinosa Roxb.) beds have significant effects on sediment resuspension in Lake Taihu. China. Hydrobiologia 581: 189–193.

    CAS  Google Scholar 

  • Hulme, P. E., 2011. Addressing the threat to biodiversity from botanic gardens. Trends in Ecology and Evolution 26: 168–174.

    PubMed  Google Scholar 

  • Hulme, P. E., S. Bacher, M. Kenis, S. Klotz, I. Kühn, D. Minchin, W. Nentwig, S. Olenin, V. Panov, J. Pergl, P. Pyšek, A. Roques, D. Sol, W. Solarz & M. Vilà, 2008. Grasping at the routes of biological invasions: a framework for integrating pathways into policy. Journal of Applied Ecology 45: 403–414.

    Google Scholar 

  • Hussner, A., 2010. NOBANIS – Invasive Alien Species Fact Sheet -Azolla filiculoides. From: Online Database of the European Network on Invasive Alien Species – NOBANIS. Available at: www.nobanis.org. [Accessed 15 December 2013].

  • Hussner, A., 2012. Alien aquatic plant species in European countries. Weed Research 52: 297–306.

    Google Scholar 

  • Jeppesen, E., B. Kronvang, J. E. Olesen, J. Audet, M. Søndergaard, C. C. Hoffmann, H. E. Andersen, T. L. Lauridsen, L. Liboriussen, S. E. Larsen, M. Beklioglu, M. Meerhoff, A. Özen & K. Özkan, 2011. Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia 663: 1–21.

    CAS  Google Scholar 

  • Jones, C. G., J. H. Lawton & M. Shachak, 1994. Organisms as ecosystem engineers. Oikos 69: 373–386.

    Google Scholar 

  • Josefsson, M., 2011. NOBANIS – Invasive Species Fact Sheet – Elodea canadensis, Elodea nuttallii and Elodea callitrichoides. From: Online Database of the European Network on Invasive Alien Species, NOBANIS. Available at: www.nobanis.org. [Accessed 15 December 2013].

  • Julien, M., 2008. Plant biology and other issues that relate to the management of water hyacinth: a global perspective with focus on Europe. EPPO Bulletin 38: 477–486.

    Google Scholar 

  • Kapitonova, O. A., 2011. Alien species of plants in aquatic and semiaquatic ecosystems of the Vyatka-Kama Cis-Urals. Russian Journal of Biological Invasions 2: 93–98.

    Google Scholar 

  • Kay, S. H. & S. T. Hoyle, 2001. Mail order, the Internet, and invasive aquatic weeds. Journal of Aquatic Plant Management 39: 88–91.

    Google Scholar 

  • Keller, R. P., P. S. E. Zu Ermgassen & D. C. Aldridge, 2009. Vectors and timing of freshwater invasions in Great Britain. Conservation Biology 23: 1526–1534.

    PubMed  Google Scholar 

  • Kobayashi, R., Y. Maezono & T. Miyashita, 2011. The importance of allochthonous litter input on the biomass of an alien crayfish in farm ponds. Population Ecology 53: 525–534.

    Google Scholar 

  • Kowarik, I. & M. von der Lippe, 2007. Pathways in plant invasions. In Nentwig, W. (ed.), Biological Invasions. Ecological Studies, Vol. 193. Springer, Berlin/Heidelberg: 29–47.

  • Lallana, V. L., R. A. Sabattini & L. del Carmen Lallana, 1987. Evapotranspiration from Eichhornia crassipes, Pistia stratiotes, Salvinia herzogii and Azolla caroliniana during summer in Argentina. Journal of Aquatic Plant Management 25: 48–50.

    Google Scholar 

  • Laranjeira, L. M. & G. Nadais, 2008. Eichhornia crassipes control in the largest Portuguese natural freshwater lagoon. EPPO Bulletin 38: 487–495.

    Google Scholar 

  • LaRue, E. A., D. Grimm & R. A. Thum, 2013. Laboratory crosses and genetic analysis of natural populations demonstrate sexual viability of invasive hybrid watermilfoils (Myriophyllum spicatum × M. sibiricum). Aquatic Botany 109: 49–53.

    Google Scholar 

  • Les, D. H., 1996. Hydrilla verticillata threatens New England. Aquatic Exotic News 3: 1–2.

    Google Scholar 

  • Les, D. H. & L. J. Mehrhoff, 1999. Introduction of nonindigenous aquatic vascular plants in southern New England: a historical perspective. Biological Invasions 1: 281–300.

    Google Scholar 

  • Leung, B. & E. M. Mandrak, 2007. The risk of establishment of aquatic invasive species: joining invasibility and propagule pressure. Proceedings of the Royal Society B 274: 2603–2609.

    PubMed Central  PubMed  Google Scholar 

  • Leung, B., D. M. Lodge, D. Finnoff, J. F. Shogren, M. A. Lewis & G. Lamberti, 2002. An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proceedings of the Royal Society B 269: 2407–2413.

    PubMed Central  PubMed  Google Scholar 

  • Little, E. C. S., 1968. The control of water weeds. Weed Research 8: 79–105.

    CAS  Google Scholar 

  • Luther, H., 1949. Vorschlag zu einer ökologischen Grundeinteilung der Hydrophyten. Acta Botanica Fennica 44: 1–15.

    Google Scholar 

  • MAE, 2005. Millenium Ecosystem Assessment Ecosystems and Human Well-being: Biodiversity Synthesis. World Resources Institute, Washington, DC.

    Google Scholar 

  • Mäkirinta, U., 1978. Ein neues ökomorphologisches Lebensformen-Systemder aquatischen Makrophyten. Phytocoenologia 4: 446–470.

    Google Scholar 

  • Marshall, W., 1852. Excessive and noxious increase of Udora canadensis. Phytologist 4: 705–715.

    Google Scholar 

  • Marshall, W., 1857. The American water-weed Anacharis alsinastrum. Phytologist 2: 194–197.

    Google Scholar 

  • Martin, J. D. & J. A. Coetzee, 2014. Competition between two aquatic macrophytes, Lagarosiphon major (Ridley) Moss (Hydrocharitaceae) and Myriophyllum spicatum Linnaeus (Haloragaceae) as influenced by substrate sediment and nutrients. Aquatic Botany 114: 1–11.

    Google Scholar 

  • Meinzer, O. E., 1927. Plants as Indicators of Groundwater. USGS Water Supply Paper 577, Denver, CO: 95 pp.

  • Minchin, D., 2007. A checklist of alien and cryptogenic aquatic species in Ireland. Aquatic Invasions 2: 341–366.

    Google Scholar 

  • Mjelde, M., P. Lombardo, D. Berge & S. W. Johansen, 2012. Mass invasion of non-native Elodea canadensis Michx. in a large, clear-water, species-rich Norwegian lake – impact on macrophyte biodiversity. Annales de Limnologie – International Journal of Limnology 48: 225–240.

    Google Scholar 

  • Moody, M. L. & D. H. Donald, 2002. Evidence of hybridity in invasive watermilfoil (Myriophyllum) populations. Proceedings of the National Academy of Sciences of the United States of America 99: 14867–14871.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moody, M. L. & D. H. Les, 2007. Geographic distribution and genotypic composition of invasive hybrid watermilfoil (Myriophyllum spicatum × M. sibiricum) populations in North America. Biological Invasions 9: 559–570.

    Google Scholar 

  • Moreira, I., T. Ferreira, A. Monteiro, L. Catarino & T. Vasconcelos, 1999. Aquatic weeds and their management in Portugal: insights and the international context. Hydrobiologia 415: 229–234.

    Google Scholar 

  • Murphy, K. J., 2002. Plant communities and plant diversity in softwater lakes of northern Europe. Aquatic Botany 73: 287–324.

    Google Scholar 

  • Newman, J. R., 2010. EUPHRESCO-DeCLAIM – a decision support system for management of invasive aquatic macrophytes. Aspects of Applied Biology 104: 19–20.

    Google Scholar 

  • Pahl-Wostl, P., A. Arthington, J. Bogardi, S. E. Bunn, H. Hoff, L. Lebel, E. Nikitina, M. Palmer, L. N. Poff, K. Richards, M. Schlüter, R. Schulze, A. St-Hilaire, R. Tharme, K. Tockner & D. Tsegai, 2013. Environmental flows and water governance: managing sustainable water uses. Current Opinion in Environmental Sustainability 5: 341–351.

    Google Scholar 

  • Parolin, P., S. Bartel & B. Rudolph, 2010. The beautiful water hyacinth Eichhornia crassipes and the role of botanic gardens in the spread of an aggressive invader. Bollettino dei Musei e degli Istituti Biologici Universitari di Genova 72: 56–66.

    Google Scholar 

  • Parolin, P., B. Rudolph, S. Bartel, C. Bresch & C. Poncet, 2012. Worldwide invasion pathways of the South American Eichhornia crassipes. Acta Horticulturae 937: 1133–1140.

    Google Scholar 

  • Patel, S., 2012. Threats, management and envisaged utilizations of aquatic weed Eichhornia crassipes: an overview. Reviews in Environmental Science and Bio/Technology 11: 249–259.

    Google Scholar 

  • Penfound, W. T. & T. T. Earle, 1948. The biology of the Water Hyacinth. Ecological Monographs 18: 447–472.

    Google Scholar 

  • Penning, W. E., M. Mjelde, B. Dudley, S. Hellsten, J. Hanganu, A. Kolada, M. van den Berg, S. Poikane, G. Phillips, N. Wilby & F. Ecke, 2008. Classifying aquatic macrophytes as indicators of eutrophication in European lakes. Aquatic Ecology 42: 237–251.

    CAS  Google Scholar 

  • Pereira, H. M., P. W. Leadley, V. Proença, R. Alkemade, J. P. W. Scharlemann, J. F. Fernandez-Manjarrés, M. B. Araújo, P. Balvanera, R. Biggs, W. W. L. Cheung, L. Chini, H. D. Cooper, E. L. Gilman, S. Guénette, G. C. Hurtt, H. P. Huntington, G. M. Mace, T. Oberdorff, C. Revenga, P. Rodrigues, R. J. Scholes, U. R. Sumaila & M. Walpole, 2010. Scenarios for global biodiversity in the 21st century. Science 330: 1496–1501.

    CAS  PubMed  Google Scholar 

  • Perna, C. N., M. Cappo, B. J. Pusey, D. W. Burrows & R. G. Pearson, 2011. Removal of aquatic weeds greatly enhances fish community richness and diversity: an example from the Burdekin river floodplain, tropical Australia. River Research and Applications 28: 1093–1104.

    Google Scholar 

  • Petroeschvsky, A. & P. D. Champion, 2008. Preventing further introduction and spread of aquatic weeds through the ornamental plant trade. In van Klinken, R. D., V. A. Osten, F. D. Panetta & J. C. Scanlan (eds), Brisbane: 16th Australian Weeds Conference. Queensland Weeds Society, Australia: 399–402.

    Google Scholar 

  • Pheloung, P. C., P. A. Williams & S. R. Halloy, 1999. A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. Journal of Environmental Management 57: 239–251.

    Google Scholar 

  • Pieterse, A. H., 1990. Introduction (Chapter 1). In Pieterse, A. H. & K. J. Murphy (eds), Aquatic Weeds. Oxford University Press, Oxford, UK: 3–16.

    Google Scholar 

  • Pinto-Cruz, C., J. A. Molina, M. Barbour, V. Silva & M. D. Espírito-Santo, 2009. Plant communities as a tool in temporary ponds conservation in SW Portugal. Hydrobiologia 634: 11–24.

    Google Scholar 

  • Poplavskaja, G. I., l 948. Ekologija rastenij. Sov. nauka, Moscow: 295 pp. (in Russian).

  • Preston, C. D. & J. M. Croft, 1997. Aquatic Plants in Britain and Ireland. Harley, Colchester.

    Google Scholar 

  • Pyšek, P. & K. Prach, 1993. Plant invasions and the ro le of riparian habitats: a comparison of four species alien to central Europe. Journal of Biogeography 20: 413–420.

    Google Scholar 

  • Pyšek, P., S. Bacher, M. Chytrý, V. Jarošík, J. Wild, L. Celesti-Grapow, N. Gassó, M. Kenis, P. W. Lambdon, W. Nentwig, J. Pergl, A. Roques, J. Sádlo, W. Solarz, M. Vilà & P. E. Hulme, 2012. Contrasting patterns in the invasions of European terrestrial and freshwater habitats by alien plants, insects and vertebrates. Global Ecology and Biogeography 19: 317–331.

    Google Scholar 

  • Rahman, M. A. & H. Hasegawa, 2011. Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83: 633–646.

    CAS  PubMed  Google Scholar 

  • Rai, D. N. & J. Datta Mushi, 1978. The influence of thick floating vegetation (Water hyacinth: Eichhornia crassipes) on the physicochemical environment of a freshwater wetland. Hydrobiologia 62: 65–69.

  • Rao, A. S., 1988. Evapotranspiration rates of Eichhornia crassipes (Mart.) Solms, Salvinia molesta d.s. Mitchell and Nymphaea lotus (L.) Willd. Linn. in a humid tropical climate. Aquatic Botany 30: 215–222.

    Google Scholar 

  • Raunkiaer, C., 1934. The Life Forms of Plants and Statistical Plant Geography. Claredon Press, Oxford: 632 pp.

  • Revenga, C., I. Campbell, R. Abell, P. de Villiers & M. Bryer, 2005. Prospects for monitoring freshwater ecosystems towards the 2010 Targets. Philosophical Transactions of the Royal Society B 360: 397–413.

    CAS  Google Scholar 

  • Ricciardi, A. & R. Kipp, 2008. Predicting the number of ecologically harmful exotic species in an aquatic system. Diversity and Distributions 14: 374–380.

    Google Scholar 

  • Ricciardi, A., M. E. Palmer & N. D. Yan, 2011. Should biological invasions be managed as natural disasters? BioScience 61: 312–317.

    Google Scholar 

  • Rich, S. M., M. Ludwig & T. D. Colmer, 2012. Aquatic adventitious root development in partially and completely submerged wetland plants Cotula coronopifolia and Meionectes brownii. Annals of Botany 110: 405–414.

    PubMed Central  PubMed  Google Scholar 

  • Richardson, D. M., P. M. Holmes, K. J. Esler, S. M. Galatowitsch, J. C. Stromberg, S. P. Kirkman, P. Pyšek & R. J. Hobbs, 2007. Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Diversity and Distributions 13: 126–139.

    Google Scholar 

  • Ridley, H. N., 1930. The Dispersal of Plants Throughout the World. Reeve & Co., Ashford.

    Google Scholar 

  • Robinet, C., H. Kehlenbeck, D. J. Kriticos, R. H. A. Baker, A. Battisti, S. Brunel, M. Dupin, D. Eyre, M. Faccoli, Z. Ilieva, M. Kenis, J. Knight, P. Reynaud, A. Yart & W. van der Werf, 2012. A suite of models to support the quantitative assessment of spread in Pest Risk Analysis. PLoS ONE 7(10): e43366. doi:10.1371/journal.pone.0043366.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rooth, J. E., J. C. Stevenson & J. C. Cornwell, 2003. Increased sediment accretion rates following invasion by Phragmites australis: the role of litter. Estuaries 26: 475–483.

    Google Scholar 

  • Ruiz Téllez, T., E. Martín de Rodrigo López, G. Lorenzo Granado, E. Albano Pérez, R. Morán López & J. M. Sánchez Guzmán, 2008. The Water Hyacinth, Eichhornia crassipes: an invasive plant in the Guadiana River Basin (Spain). Aquatic Invasions 3: 42–53.

  • Rune, F. & H. Jørgensen, 1997. Andemadsbregne (Azolla Lamarck) – botanik, udbredelse og anvendelse. URT 2: 59–65.

    Google Scholar 

  • Sala, O. E., F. S. Chapin, J. J. Armesto, R. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker & D. H. Wall, 2000. Global biodiversity scenarios for the year 2100. Science 287: 1770–1774.

    CAS  PubMed  Google Scholar 

  • Sandvik, H., B.-E. Sæther, T. Holmern, J. Tufto, S. Engen & H. E. Roy, 2012. Generic ecological impact assessments of alien species in Norway: a semi-quantitative set of criteria. Biodiversity and Conservation 22: 37–62.

    Google Scholar 

  • Saunders, D. L., J. J. Meeuwig & A. C. J. Vincent, 2002. Freshwater protected areas: strategies for conservation. Conservation Biology 16: 30–41.

    Google Scholar 

  • Schnitzler, A., B. W. Hale & E. M. Alsum, 2007. Examining native and exotic species diversity in European riparian forests. Biological Conservation 138: 146–156.

    Google Scholar 

  • Schultz, R. & E. Dibble, 2012. Effects of invasive macrophytes on freshwater fish and macroinvertebrate communities: the role of invasive plant traits. Hydrobiologia 684: 1–14.

    Google Scholar 

  • Schuyler, A. E., 1984. Classification of life forms and growth forms of aquatic macrophytes. Bartonia 50: 8–11.

    Google Scholar 

  • Sculthorpe, C. D., 1967. The Biology of Aquatic Vascular Plants. Edward Arnold, London: XVIII + 610 pp.

  • Sheppard, A. W., R. Shaw & R. Sforza, 2005. Top 20 environmental weeds for classical biological control in Europe: a review of opportunities, regulations and other barriers to adoption. Weed Research 46: 93–117.

    Google Scholar 

  • Shine, C., M. Kettunen, P. Genovesi, F. Essl, S. Gollasch, W. Rabitsch, R. Scalera, U. Starfinger & P. ten Brink, 2010. Assessment to support continued development of the EU Strategy to combat invasive alien species. Final Report for the European Commission. Institute for European Environmental Policy (IEEP), Brussels.

  • Simpson, D. A., 1984. A short history of the introduction and spread of Elodea Michx. in the British Isles. Watsonia 15: 1–9.

    Google Scholar 

  • Smith, V. G. & E. W. Stiles, 1994. Dispersal of salt-marsh seeds on the feet and feathers of waterfowl. Wetlands 14: 316–319.

    Google Scholar 

  • Smolders, A. J. P., E. C. H. E. T. Lucassen & J. G. M. Roelofs, 2002. The isoetid environment: biogeochemistry and threats. Aquatic Botany 73: 325–350.

    CAS  Google Scholar 

  • Smolders, A. J. P., L. P. M. Lamers, C. den Hartog & J. G. M. Roelofs, 2003. Mechanisms involved in the decline of Stratiotes aloides L. in The Netherlands: sulphate as a key variable. Hydrobiologia 506–509: 603–610.

    Google Scholar 

  • Sorensen, A. E., 1986. Seed dispersal by adhesion. Annual Reviews of Ecology and Systematics 17: 443–463.

    Google Scholar 

  • Staniforth, R. J. & P. B. Cavers, 1976. An experimental study of water dispersal in Polygonum sp. Canadian Journal of Botany 54: 2587–2596.

    Google Scholar 

  • Steffen, K., G. Schrader, U. Starfinger, S. Brunel & A. Sissons, 2012. Pest risk analysis and invasive alien plants: progress through PRATIQUE. EPPO Bulletin 42: 28–34.

    Google Scholar 

  • Stendera, S., R. Adrian, N. Bonada, M. Caňedo-Argüelles, B. Hugueny, K. Januschke, F. Pletterbauer & D. Hering, 2012. Drivers and stressors of freshwater biodiversity patterns across different ecosystems and scales: a review. Hydrobiologia 696: 1–28.

    Google Scholar 

  • Stiers, I., N. Crohain, G. Josens & L. Triest, 2011. Impact of three aquatic invasive species on native plants and macroinvertebrates in temperate ponds. Biological Invasions 13: 2715–2726.

    Google Scholar 

  • Strayer, D. L., 2010. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwater Biology 55: 152–174.

    Google Scholar 

  • Strayer, D. L. & D. Dudgeon, 2010. Freshwater biodiversity conservation: recent progress and future challenges. Journal of the North American Benthological Society 29: 344–358.

    Google Scholar 

  • Sukopp, H., 2003. Flora and Vegetation Reflecting the Urban History of Berlin. Die Erde 134: 295–316.

    Google Scholar 

  • Templer, P., S. Findlay & C. Wigand, 1998. Sediment chemistry associated with native and non-native emergent macrophytes of a Hudson River marsh ecosystem. Wetlands 18: 70–78.

    Google Scholar 

  • Thiébaut, G., T. Rolland, F. Robach, M. Trémoliéres & S. Muller, 1997. Quelques conséquences de l’introduction de deux espéces de macrophytes, Elodea canadensis Michaux et Elodea nuttallii (Planch.) St. John dans les écosystémes aquatiques continentaux: exemples de la plaine d’Alsace et des Vosges du Nord (Nord-Est de la France). Bulletin Francais de la Pêche et de la Pisciculture 344/345: 441–452.

  • Thiselton-Dyer, W. T., 1891. Historical account of Kew to 1841. Bulletin of Miscellaneous Information Royal Gardens, Kew 60: 279–327.

    Google Scholar 

  • Thouvenot, L., J. Haury & G. Thiébaut, 2012. Responses of two invasive macrophyte species to salt. Hydrobiologia 686: 213–223.

  • Thum, R. A. & J. T. Lennon, 2006. Is hybridization responsible for invasive growth of non-indigenous water-milfoils? Biological Invasions 8: 1061–1066.

    Google Scholar 

  • Thum, R. A., M. P. Zuellig, R. L. Johnson, M. L. Moody & C. Vossbrinck, 2011. Molecular markers reconstruct the invasion history of variable leaf watermilfoil (Myriophyllum heterophyllum) and distinguish it from closely related species. Biological Invasions 13: 1687–1709.

    Google Scholar 

  • Toivonen, H. & P. Huttunen, 1995. Aquatic macrophytes and ecological gradients in 57 small lakes in southern Finland. Aquatic Botany 51: 197–221.

    Google Scholar 

  • Tuchman, N. C., D. J. Larkin, P. Geddes, R. Wildova, K. Jankowski & D. E. Goldberg, 2009. Patterns of environmental change associated with Typha × glauca invasion in a Great Lakes Coastal Wetland. Wetlands 29: 964–975.

    Google Scholar 

  • UNEP, 2012. Fifth Global Environment Outlook (GEO5): Environment for the Future We Want. United Nations Environment Programme, Nairobi.

    Google Scholar 

  • Urban, R. A., J. E. Titus & W.-X. Zhu, 2009. Shading by an invasive macrophyte has cascading effects on sediment chemistry. Biological Invasions 11: 265–273.

    Google Scholar 

  • Vaishampayan, A., R. P. Sinha, D.-P. Hader, T. Dey, A. K. Gupta, U. Bhan & A. L. Rao, 2001. Cyanobacterial biofertilizers in rice agriculture. The Botanical Review 67: 453–516.

    Google Scholar 

  • Van der Pijl, L., 1972. Principles of Dispersal in Higher Plants, 2nd ed. Springer, Berlin.

    Google Scholar 

  • Van Leeuwen, C. H. A., G. van der Velde, J. M. van Groenendael & M. Klaassen, 2012. Gut Travellers: Internal Dispersal of Aquatic Organisms by Waterfowl. Journal of Biogeography 39: 2031–2040.

    Google Scholar 

  • Van Valkenburg, J. L. C. H. & A. J. W. Rotteveel, 2010. Cabomba caroliniana Gray, een subtropische verrassing in Loosdrecht. Gorteria 34: 106–118.

    Google Scholar 

  • Verbrugge, L. N. H., G. van der Velde, J. A. Hendriks, H. Verreycken & R. S. E. W. Leuven, 2012. Risk classifications of aquatic non-native species: application of contemporary European assessment protocols in different biogeographical settings. Aquatic Invasions 7: 49–58.

    Google Scholar 

  • Vicente, J. R., H. M. Pereira, C. F. Randin, J. Goncalves, A. Lomba, P. Alves, J. Metzger, M. Cezar, A. Guisan & J. Honrado, 2014. Environment and dispersal paths override life strategies and residence time in determining regional patterns of invasion by alien plants. Perspectives in Plant Ecology, Evolution and Systematics 16: 1–10.

    Google Scholar 

  • Vilà, M., J. L. Espinar, M. Hejda, P. E. Hulme, V. Jarošík, J. L. Maron, J. Pergl, U. Schaffner, Y. Sun & P. Pyšek, 2011. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecology Letters 14: 702–708.

    PubMed  Google Scholar 

  • Villamagna, A. M. & B. R. Murphy, 2010. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshwater Biology 55: 282–298.

    Google Scholar 

  • Weber, E. & D. Gut, 2004. Assessing the risk of potentially invasive plant species in central Europe. Journal for Nature Conservation 12: 171–179.

    Google Scholar 

  • Wigand, C., J. C. Stevenson & J. C. Cornwell, 1997. Effects of different submersed macrophytes on sediment biogeochemistry. Aquatic Botany 56: 233–244.

    CAS  Google Scholar 

  • Wilby, N. J., 2007. Managing invasive aquatic plants: problems and prospects. Aquatic Conservation 17: 659–665.

    Google Scholar 

  • Wilby, N. J., V. J. Abernethy & B. O. L. Demars, 2000. Attribute-based classification of European hydrophytes and its relationship to habitat utilization. Freshwater Biology 43: 43–74.

    Google Scholar 

  • Wilcock, R. J., P. D. Champion, J. W. Nagels & G. F. Croker, 1999. The influence of aquatic macrophytes on the hydraulic and physico-chemical properties of a New Zealand lowland stream. Hydrobiologia 416: 203–214.

    CAS  Google Scholar 

  • Winfield, I. J., J. M. Fletcher & J. B. James, 2011. Invasive fish species in the largest lakes of Scotland, Northern Ireland, Wales and England: the collective UK experience. Hydrobiologia 660: 93–103.

    CAS  Google Scholar 

  • Woudstra, J., 2007. Robert Marnock and the creation of the Sheffield Botanical and Horticultural Gardens, 1834–40. Garden History 35: 2–36.

    Google Scholar 

  • Wright, A. D. & M. F. Purcell, 1995. Eichhornia crassipes (Mart.) Solms-Laubach. In Groves, R. H., R. C. H. Sheperd & R. G. Richardson (eds), The Biology of Australian Weeds, Melbourne, Australia: 111–121.

  • Zhang, Y–. Y., D.-Y. Zhang & C. H. S. Barrett, 2010. Genetic uniformity characterizes the invasive spread of water hyacinth (Eichhornia crassipes), a clonal aquatic plant. Molecular Ecology 19: 1774–1786.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper is based on a plenary talk held at the 12th Conference on the Ecology and Management of Alien Plant invasions (EMAPi, 22–26 September 2013, Pirenópolis, Brasil). I would like to thank the EMAPi Scientific Committee and organizers who invited me to present this paper at the conference and Sidinei M. Thomaz for insightful and meaningful discussion and for encouraging me in the preparation of this review. Additional useful insights were provided by colleagues at the conference. Two anonymous reviewers greatly helped in improving the paper. I am also very grateful to Nadine S. Wright for the revision of the English text, to A. Solinas and Pamuk for their patience. This paper is dedicated to the memory of Francesca Gherardi (Florence, Italy, 12 November 1955–14 February 2013) who was an Associate Professor at the Department of Biology of the University of Florence. She was a brilliant Italian Zoologist and Ethologist, and one of the most well known and active experts on invasive alien aquatic species. The paper title recalls the title of the book edited by F. Gherardi in 2007 “Biological Invaders in Inland Waters: Profiles, Distribution, and Threats” Invading Nature, Springer Series in Invasion Ecology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Brundu.

Additional information

Guest editors: Sidinei M. Thomaz, Katya E. Kovalenko, John E. Havel & Lee B. Kats / Aquatic Invasive Species

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brundu, G. Plant invaders in European and Mediterranean inland waters: profiles, distribution, and threats. Hydrobiologia 746, 61–79 (2015). https://doi.org/10.1007/s10750-014-1910-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1910-9

Keywords

Navigation