Skip to main content

Advertisement

Log in

Evidence of spatial and temporal changes in sources of organic matter in estuarine sediments: stable isotope and fatty acid analyses

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We investigated spatial and temporal changes in sources of organic matter in sediments within an estuarine environment in South Africa using fatty acids (FA) and stable isotopes (SI). Samples of sediments and sources of organic matter [i.e., particulate organic matter, microphytobenthos (MPB), macrophytes, salt marsh plants, and terrestrial leaves] were collected during spring and summer 2012, and autumn and winter 2013 from the upper, middle, and lower reaches. A Stable Isotope Analysis in R (SIAR) mixing model was used to identify the organic matter sources contributing to sediments in each estuarine reach and season. We found that diatom-associated fatty acids (20:5ω3; 16:1ω7) increased toward the upper reaches, while long-chained terrigenous fatty acids (24:0) tended to be more prevalent in lower reach sediments. In support of the FA results, the SI mixing model showed a substantial contribution from the marsh grass Spartina maritima in sediments of the lower estuary during periods of low-freshwater discharge (autumn and winter), while MPB was the main component in sediments from the upper and middle reaches during all seasons. Our results have implications for evaluating estuarine food webs since the spatial and seasonal variability in the organic matter deposited can influence estuarine community structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrantes, K. G., A. Barnett, T. R. Marwick & S. Bouillon, 2013. Importance of terrestrial subsidies for estuarine food webs in contrasting East African catchments. Ecosphere 4: art14.

  • Antonio, E. S., A. Kasai, M. Ueno, N. Won, Y. Ishihi, H. Yokoyama & Y. Yamashita, 2010. Spatial variation in organic matter utilization by benthic communities from Yura River-Estuary to offshore of Tango Sea, Japan. Estuarine, Coastal and Shelf Science 86: 107–117.

    Article  CAS  Google Scholar 

  • Arts, M. T., R. G. Ackman & B. J. Holub, 2001. “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Canadian Journal of Fisheries and Aquatic Sciences 58: 122–137.

    Article  CAS  Google Scholar 

  • Arzayus, K. M. & E. A. Canuel, 2005. Organic matter degradation in sediments of the York River estuary: Effects of biological vs. physical mixing. Geochimica et Cosmochimica Acta 69: 455–464.

    Article  CAS  Google Scholar 

  • Bouillon, S., N. Koedam, W. Baeyens, B. Satyanarayana & F. Dehairs, 2004. Selectivity of subtidal benthic invertebrate communities for local microalgal production in an estuarine mangrove ecosystem during the post-monsoon period. Journal of Sea Research 51: 133–144.

    Article  Google Scholar 

  • Bouma, T. J., M. B. D. Vries, E. Low, L. Kusters, P. M. J. Herman, I. C. Tánczos, S. Temmerman, A. Hesselink, P. Meire & S. V. Regenmortel, 2005. Flow hydrodynamics on a mudflat and in salt marsh vegetation: identifying general relationships for habitat characterisations. Hydrobiologia 540: 259–274.

    Article  Google Scholar 

  • Budge, S. M. & C. C. Parrish, 1998. Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay. Newfoundland. II. Fatty acids. Organic Geochemistry 29: 1547–1559.

    Article  CAS  Google Scholar 

  • Budge, S. M., C. C. Parrish & C. H. Mckenzie, 2001. Fatty acid composition of phytoplankton, settling particulate matter and sediments at a sheltered bivalve aquaculture site. Marine Chemistry 76: 285–303.

    Article  CAS  Google Scholar 

  • Canuel, E. A., 2001. Relations between river flow, primary production and fatty acid composition of particulate organic matter in San Francisco and Chesapeake Bays : a multivariate approach. Organic Geochemistry 32: 563–583.

    Article  CAS  Google Scholar 

  • Canuel, E. A. & C. S. Martens, 1996. Reactivity of recently deposited organic matter : near the sediment-water degradation interface of lipid compounds. 60: 1793–1806.

  • Canuel, E. A. & A. R. Zimmerman, 1999. Composition of particulate organic matter in the Southern Chesapeake Bay: sources and reactivity. Estuaries 22: 980–994.

    Google Scholar 

  • Canuel, E. A., K. H. Freeman & S. G. Wakeham, 1997. Isotopic compositions of lipids biomarker compounds in estuarine plants and surface sediments. Limnology and Oceanography 42: 1570–1583.

    Article  CAS  Google Scholar 

  • Carrie, R. H., L. Mitchell & K. D. Black, 1998. Fatty acids in surface sediment at the Hebridean shelf edge, west of Scotland. Organic Geochemistry 29: 1583–1593.

    Article  CAS  Google Scholar 

  • Chanton, J. & F. Lewis, 1999. Plankton and dissolved inorganic carbon isotopic composition in a river-dominated estuary: Apalachicola Bay, Florida. Estuaries 22: 575–583.

    Article  CAS  Google Scholar 

  • Colombo, J., N. Silverberg & J. Gearing, 1997. Lipid biogeochemistry in the Laurentian trough—II. Changes in composition of fatty acids, sterols and aliphatic hydrocarbons during early diagenesis. Organic Geochemistry 26: 257–274.

    Article  CAS  Google Scholar 

  • Couch, C. A., 1989. Carbon and nitrogen stable isotopes of meiobenthos and their food resources. Estuarine, Coastal and Shelf Science 28: 433–441.

    Article  Google Scholar 

  • Dai, J. H. & M. Y. Sun, 2007. Organic matter sources and their use by bacteria in the sediments of the Altamaha estuary during high and low discharge periods. Organic Geochemistry 38: 1–15.

    Article  CAS  Google Scholar 

  • Dalsgaard, J., M. St. John, G. Kattner, D. Müller-Navarra & H. Wilhelm, 2003. Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology 46: 225–340.

    Article  PubMed  Google Scholar 

  • Deegan, L. & R. Garritt, 1997. Evidence for spatial variability in estuarine food webs. Marine Ecology Progress Series 147: 31–47.

    Article  Google Scholar 

  • Dehairs, F., G. G. Rao, P. Chandra Mohan, A. V. Raman, S. Marguillier & L. Hellings, 2000. Tracing mangrove carbon in suspended matter and aquatic fauna of the Gautami- Godavari Delta, Bay of Bengal (India). Hydrobiologia 431: 225–241.

    Article  CAS  Google Scholar 

  • France, R., 1995. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Marine Ecology Progress Series 124: 307–312.

    Article  Google Scholar 

  • Froneman, P. W., 2000. Feeding studies on selected zooplankton in a temperate estuary, South Africa. Estuarine, Coastal and Shelf Science 51: 543–552.

    Article  CAS  Google Scholar 

  • Froneman, P. W., 2001. Seasonal changes in zooplankton biomass and grazing in a temperate estuary, South Africa. Estuarine, Coastal and Shelf Science 52: 543–553.

    Article  CAS  Google Scholar 

  • Fry, B., 2006. Stable Isotope Ecology. Springer, New York: 316 pp.

  • Fry, B. & E. B. Sherr, 1984. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contributions in Marine Science 27: 13–47.

    CAS  Google Scholar 

  • Gogou, A. & E. G. Stephanou, 2004. Marine organic geochemistry of the Eastern Mediterranean: 2. Polar biomarkers in Cretan Sea surficial sediments. Marine Chemistry 85: 1–25.

    Article  CAS  Google Scholar 

  • Goñi, M. A., G. Voulgaris & Y. H. Kim, 2009. Composition and fluxes of particulate organic matter in a temperate estuary (Winyah Bay, South Carolina, USA) under contrasting physical forcings. Estuarine, Coastal and Shelf Science 85: 273–291.

    Article  Google Scholar 

  • Graf, G., 1992. Benthic-pelagic coupling: a benthic view. Oceanography and Marine Biology: An Annual Review 30: 149–190.

    Google Scholar 

  • Haddad, R. I., C. S. Martens & J. W. Farrington, 1992. Quantifying early diagenesis of fatty acids in a rapidly accumulating coastal marine sediment. Organic Geochemistry 19: 206–216.

    Article  Google Scholar 

  • Hammer, Ø., D. A. T. Harper, & P. D. Ryan, 2001. PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica 4: 9 pp.

  • Harvey, H. & J. Johnston, 1995. Lipid composition and flux of sinking and size-fractionated particles in Chesapeake Bay. Organic Geochemistry 23: 751–764.

    Article  CAS  Google Scholar 

  • Hedges, J. I. & R. G. Keil, 1995. Sedimentary organic matter preservation—an assessment and speculative synthesis. Marine Chemistry 49: 81–115.

    Article  CAS  Google Scholar 

  • Hedges, J. I., R. G. Keil & R. Benner, 1997. What happens to terrestrial organic matter in the ocean? Organic Geochemistry 27: 195–212.

    Google Scholar 

  • Herman, P., J. Middelburg, J. Van De Kopple & C. H. R. Heip, 1999. Ecology of estuarine macrobenthos. Advances in Ecological Research 29: 195–240.

    Article  Google Scholar 

  • Hu, J., H. Zhang & P. Peng, 2006. Fatty acid composition of surface sediments in the subtropical Pearl River estuary and adjacent shelf, Southern China. Estuarine, Coastal and Shelf Science 66: 346–356.

    Article  CAS  Google Scholar 

  • Indarti, E., M. I. A. Majid, R. Hashim & A. Chong, 2005. Direct FAME synthesis for rapid total lipid analysis from fish oil and cod liver oil. Journal of Food Composition and Analysis 18: 161–170.

    Article  CAS  Google Scholar 

  • Jacob, U., K. Mintenbeck & T. Brey, 2005. Stable isotope food web studies: a case for standardized sample treatment. Marine Ecology Progress Series 287: 251–253.

    Article  Google Scholar 

  • Kharlamenko, V., S. Kiyashko, A. Imbs & D. Vyshkvartzev, 2001. Identification of food sources of invertebrates from the seagrass Zostera marina community using carbon and sulfur stable isotope ratio and fatty acid analyses. Marine Ecology Progress Series 220: 103–117.

    Article  CAS  Google Scholar 

  • Kruskal, J. B. & M. Wish, 1978. Multidimensional scaling. Sage Publications, Beverly Hills.

  • LeBlanc, C. & R. Bourbonniere, 1989. Carbon isotopes and fatty acids analysis of the sediments of Negro Harbour, Nova Scotia, Canada. Estuarine, Coastal and Shelf Science 28: 261–276.

    Article  CAS  Google Scholar 

  • McLusky, D. S. & M. Elliott, 2004. The Estuarine Ecosystem, Ecology, Threats and Management, 3rd edn. Oxford University Press, Oxford: 224 pp.

  • Meziane, T. & M. Tsuchiya, 2000. Fatty acids as tracers of organic matter in the sediment and food web of a mangrove/intertidal flat ecosystem, Okinawa, Japan. Marine Ecology Progress Series 200: 49–57.

    Article  CAS  Google Scholar 

  • Meziane, T., L. Bodineau, C. Retiere & G. Thoumelin, 1997. The use of lipid markers to define sources of organic matter in sediment and food web of the intertidal salt-marsh-flat ecosystem of Mont-Saint-Michel Bay, France. Journal of Sea Research 38: 47–58.

    Article  Google Scholar 

  • Napolitano, G. E., R. J. Pollero, A. M. Gayoso, B. A. Macdonald & R. J. Thompsonii, 1997. Fatty acids as trophic markers of phytoplankton blooms in the Bahia Blanca Estuary (Buenos Aires, Argentina) and in Trinity Bay (Newfoundland, Canada). Biochemical Systematics and Ecology 25: 739–755.

    Article  CAS  Google Scholar 

  • Olin, J., N. Hussey, S. Rush, G. Poulakis, C. Simpfendorfer, M. Heupel & A. Fisk, 2013. Seasonal variability in stable isotopes of estuarine consumers under different freshwater flow regimes. Marine Ecology Progress Series 487: 55–69.

    Article  CAS  Google Scholar 

  • Palomo, L. & E. A. Canuel, 2010. Sources of fatty acids in sediments of the York River Estuary: relationships with physical and biological processes. Estuaries and Coasts 33: 585–599.

    Article  CAS  Google Scholar 

  • Parnell, A. C., R. Inger, S. Bearhop & A. L. Jackson, 2010. Source partitioning using stable isotopes: coping with too much variation. PLOS one 5: e9672.

    Article  PubMed Central  PubMed  Google Scholar 

  • Parrish, C. C., T. Abrajano, S. M. Budge, R. Helleur, E. D. Hudson, K. Pulchan, & C. Ramos, 2000. Lipid and phenolic biomarkers in marine ecosystems: analysis and applications In Wangersky, P. (ed.), The Handbook of Environmental Chemistry. Springer, Berlin: 193–223.

  • Perry, G. J., J. K. Volkman, R. B. Johns & H. J. Bavor, 1979. Fatty acids of bacterial origin in contemporary marine sediments. Geochimica et Cosmochimica Acta 43: 1715–1725.

    Article  CAS  Google Scholar 

  • Phillips, D. L. & J. W. Gregg, 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136: 261–269.

    Article  PubMed  Google Scholar 

  • Polis, G. A., W. B. Anderson & R. D. Holt, 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28: 289–316.

    Article  Google Scholar 

  • Rajendran, N., Y. Suwa & Y. Urushigawa, 1993. Distribution of phospholipid ester-linked fatty acid biomarkers for bacteria in the sediment of Ise Bay, Japan. Marine Chemistry 42: 39–56.

    Article  CAS  Google Scholar 

  • Richoux, N. B. & P. W. Froneman, 2008. Trophic ecology of dominant zooplankton and macrofauna in a temperate, oligotrophic South African estuary: a fatty acid approach. Marine Ecology Progress Series 357: 121–137.

    Google Scholar 

  • Riera, P. & P. Richard, 1997. Temporal variation of δ13C in particulate organic matter and oyster Crassostrea gigas in Marennes-Oleron Bay (France): effect of freshwater inflow. Marine Ecology Progress Series 147: 105–115.

    Article  Google Scholar 

  • Rowe, G., M. Sibuet, J. Deming, A. Khripounoff, J. Tietjen, S. Macko & R. Theroux, 1991. “Total” sediment biomass and preliminary estimates of organic carbon residence time in deep-sea benthos. Marine Ecology Progress Series 79: 99–114.

    Article  Google Scholar 

  • Ryba, S. A. & R. M. Burgess, 2002. Effects of sample preparation on the measurement of organic carbon, hydrogen, nitrogen, sulfur, and oxygen concentrations in marine sediments. Chemosphere 48: 139–147.

    Article  CAS  PubMed  Google Scholar 

  • Schweizer, M., J. Fear & G. Cadisch, 1999. Isotopic (13C) fractionation during plant residue decomposition and its implications for soil organic matter studies. Rapid Communications in Mass Spectrometry 13: 1284–1290.

    Article  CAS  PubMed  Google Scholar 

  • Volkman, J., R. Johns & F. Gillan, 1980. Microbial lipids of an intertidal sediment—I. Fatty acids and hydrocarbons. Geochimica et Cosmochimica Acta 44: 1133–1143.

    Article  CAS  Google Scholar 

  • Volkman, J. K., S. M. Barrett, S. I. Blackburn, M. P. Mansour, E. L. Sikes & F. Gelin, 1998. Microalgal biomarkers: a review of recent research developments. Organic Geochemistry 29: 1163–1179.

    Article  CAS  Google Scholar 

  • Wedin, D. A., L. L. Tieszen, B. Dewey & J. Pastor, 1995. Carbon isotope dynamics during grass decomposition and soil organic matter formation. Ecology 76: 1383–1392.

    Article  Google Scholar 

  • Whitfield, A. K., A. W. Paterson, A. H. Bok & H. M. Kok, 1994. A comparison of the ichthyofaunas in two permanently open eastern Cape estuaries. South African Journal of Zoology 29: 175–185.

    Google Scholar 

  • Zieman, J. C., S. A. Macko & A. L. Mills, 1984. Role of seagrasses and mangroves in estuarine food webs: temporal and spatial changes in stable isotope composition and amino acid content during decomposition. Bulletin of Marine Science 35: 380–392.

    Google Scholar 

  • Zimmerman, A. R. & E. A. Canuel, 2001. Bulk organic matter and lipid biomarker composition of Chesapeake Bay surficial sediments as indicators of environmental processes. Estuarine, Coastal and Shelf Science 53: 319–341.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Sandisa Imbewu Initiative at Rhodes University, the Water Research Commission of South Africa, and the National Research Foundation of South Africa. We thank Jeffrey Hean, Katherina Schoo, Matthew Parkinson, and Mandla Magoro for field assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Bergamino.

Additional information

Handling editor: Pierluigi Viaroli

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Supplementary material 2 (DOC 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergamino, L., Dalu, T. & Richoux, N.B. Evidence of spatial and temporal changes in sources of organic matter in estuarine sediments: stable isotope and fatty acid analyses. Hydrobiologia 732, 133–145 (2014). https://doi.org/10.1007/s10750-014-1853-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1853-1

Keywords

Navigation