Skip to main content
Log in

The influence of anthropogenic shoreline changes on the littoral abundance of fish species in German lowland lakes varying in depth as determined by boosted regression trees

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Residential development on lake shores is regularly associated with the conversion of natural littoral habitats to riprap, sheet piles, beaches, parks, or marinas. The subsequent loss of littoral vegetation induces a decline of structural diversity and impacts littoral fish communities. These impacts may be shaped by lake morphology. Using boosted regression trees (BRT) to relate fish abundance data from 57 north-east German lowland lakes to various factors characterizing trophic state, lake morphology, and shoreline development, we investigated the response of 11 fish species to shoreline development. The analyses revealed that mean depth followed by trophic level and shoreline length (SL) contributed most in explaining littoral fish abundance. BRT models built for deep and shallow lakes separately confirmed that primarily trophic level and SL influenced fish abundance but that littoral vegetation was relatively more important in deep compared to shallow lakes, indicating that the effects of shoreline development may be more pronounced in deep lakes where the littoral makes up a smaller proportion of the lake area as compared to shallow lakes. The BRT further demonstrated species-specific responses to shoreline degradation, indicating that the reliability of ecological quality assessments of lakes can be improved by applying separate metrics for individual species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Argillier, C., S. Caussé, M. Gevrey, S. Pédron, J. De Bortoli, S. Brucet, M. Emmrich, E. Jeppesen, T. Lauridsen, T. Mehner, M. Olin, M. Rask, P. Volta, I. J. Winfield, F. Kelly, T. Krause, A. Palm & K. Holmgren, 2013. Development of a fish-based index to assess the eutrophication status of European lakes. Hydrobiologia 704(1): 193–211.

    Article  Google Scholar 

  • Babler, A. L., C. T. Solomon & P. R. Schilke, 2008. Depth-specific patterns of benthic secondary production in an oligotrophic lake. Journal of the North American Benthological Society 27(1): 108–119.

    Article  Google Scholar 

  • Balon, E. K., 1975. Reproductive guilds of fishes: a proposal and definition. Journal of the Fisheries Research Board of Canada 32: 821–864.

    Article  Google Scholar 

  • Benson, B. J. & J. J. Magnuson, 1992. Spatial heterogeneity of littoral fish assemblages in lakes: relation to species diversity and habitat structure. Canadian Journal of Fisheries and Aquatic Sciences 49: 1493–1500.

    Article  Google Scholar 

  • Bohlen, J., 2003. Untersuchungen zur Autökologie des Steinbeißers, Cobitis taenia. Dissertation, Mathematisch-Naturwissenschaftlichen Fakultät I der Humboldt-Universität zu Berlin.

  • Brämick, U., E. Fladung & P. Doering-Arjes, 2008. Aalmanagementplan – Flussgebietsgemeinschaft Elbe. Institute of Inland Fisheries, Potsdam.

    Google Scholar 

  • Brauns, M., X. F. Garcia, N. Walz & M. T. Pusch, 2007. Effects of human shoreline development on littoral macroinvertebrates in lowland lakes. Journal of Applied Ecology 44: 1138–1144.

    Article  Google Scholar 

  • Bryan, M. D. & D. L. Scarnecchia, 1992. Species richness, composition, and abundance of fish larvae and juveniles inhabiting natural and developed shorelines of a glacial Iowa lake. Environmental Biology of Fishes 35: 329–341.

    Article  Google Scholar 

  • Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley & V. H. Smith, 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559–568.

    Article  Google Scholar 

  • Christensen, D. L., B. R. Herwig, D. E. Schindler & S. R. Carpenter, 1996. Impacts of lakeshore residential development on coarse woody debris in north temperate lakes. Ecological Applications 6: 1143–1149.

    Article  Google Scholar 

  • Coops, H., M. Bekliogly & T. Crisman, 2003. The role of water-level fluctuations in shallow lake ecosystems—workshop conclusions. Hydrobiologia 506–509: 23–27.

    Article  Google Scholar 

  • Crowder, L. B., D. D. Squires & J. A. Rice, 1997. Nonadditive effects of terrestrial and aquatic predators on juvenile estuarine fish. Ecology 78: 1796–1804.

    Article  Google Scholar 

  • De Nie, H. W., 1987. The decrease in aquatic vegetation in Europe and its consequences for fish populations. EIFAC/CECPI Occasional Paper 19. FAO, Rome: 1–52.

  • De’Ath, G., 2007. Boosted trees for ecological modeling and prediction. Ecology 88: 243–251.

    Article  PubMed  Google Scholar 

  • Degerman, E., J. Hammar, P. Nyberg & G. Svärdson, 2001. Human impact on the fish diversity in the four largest lakes of Sweden. Ambio 8: 522–528.

    Google Scholar 

  • Dodson, S., A. L. Newman, S. Will-Wolf, M. L. Alexander, M. P. Woodford & S. Van Egeren, 2007. The relationship between zooplankton community structure and lake characteristics in temperate lakes (Northern Wisconsin, USA). Journal of Plankton Research 31: 93–100.

    Article  Google Scholar 

  • Eklöv, P., 1997. Effects of habitat complexity and prey abundance on the spatial and temporal distribution of perch (Perca fluviatilis) and pike (Esox lucius L.). Canadian Journal of Fisheries and Aquatic Sciences 54: 1520–1531.

    Google Scholar 

  • Elith, J., J. R. Leathwick & T. Hastie, 2008. A working guide to boosted regression trees. Journal of Animal Ecology 77: 802–813.

    Article  PubMed  CAS  Google Scholar 

  • Everett, R. A. & G. M. Ruiz, 1993. Coarse woody debris as a refuge from predation in aquatic communities. Oecologia 93: 475–486.

    Article  Google Scholar 

  • Francis, T. B. & D. E. Schindler, 2006. Degradation of littoral habitats by residential development: woody debris in lakes of the Pacific Northwest and Midwest, United States. Ambio 35(6): 274–280.

    Article  PubMed  Google Scholar 

  • Frid, A. & L. Dill, 2002. Human-caused disturbance stimuli as a form of predation risk. Conservation Ecology 6. http://www.consecol.org/vol6/iss1/art11.

  • Gabel, F., X. F. Garcia, I. Schnauder & M. T. Pusch, 2012. Effects of ship-induced waves on littoral benthic invertebrates. Freshwater Biology 57(12): 2425–2435.

    Article  Google Scholar 

  • Gaeta, J. W., M. J. Guarascio, G. G. Sass & S. R. Carpenter, 2011. Lakeshore residential development and growth of largemouth bass (Micropterus salmoides): a cross-lakes comparison. Ecology of Freshwater Fish 20: 92–101.

    Article  Google Scholar 

  • Gasith, A., 1991. Can littoral resources influence ecosystem processes in large deep lakes? Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 24: 1073–1076.

    Google Scholar 

  • Gélinas, M. & B. Pinel-Alloul, 2008. Summer depth selection in crustacean zooplankton in nutrient-poor boreal lakes is affected by recent residential development. Freshwater Biology 53: 2438–2454.

    Article  Google Scholar 

  • Goforth, R. R. & S. M. Carman, 2009. Multiscale relationships between Great Lakes nearshore fish communities and anthropogenic shoreline factors. Journal of Great Lakes Research 35: 215–223.

    Article  Google Scholar 

  • Gonzales-Abraham, C. E., C. Volker, V. C. Radeloff, T. J. Hawbaker, R. B. Hammer, S. I. Stewart & M. K. Clayton, 2007. Patterns of houses and habitat loss from 1937 to 1999 in Northern Wisconsin, USA. Ecological Applications 17: 2011–2023.

    Article  Google Scholar 

  • Harmon, M. E., J. F. Franklin, F. J. Swanson, P. Sollins, S. V. Gregory, J. D. Lattin, N. H. Anderson, S. P. Cline, N. G. Aumen, J. R. Sedell, G. W. Lienkaemper, K. Cromack, Jr. & K. W. Cummins, 1986. Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research 15: 133–302.

    Google Scholar 

  • Hecky, R. E. & R. H. Hesslein, 1995. Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. Journal of the North American Benthological Society 14(4): 631–653.

    Article  Google Scholar 

  • Helmus, M. R. & G. G. Sass, 2008. The rapid effects of a whole-lake reduction of coarse woody debris on fish and benthic macroinvertebrates. Freshwater Biology 53: 1423–1433.

    Article  Google Scholar 

  • Hölker, F., S. S. Haertel, S. Steiner & T. Mehner, 2002. Effects of piscivore-mediated habitat use on growth, diet and zooplankton consumption of roach: an individual-based modelling approach. Freshwater Biology 47: 2345–2358.

    Article  Google Scholar 

  • Jennings, M. J., M. A. Bozek, G. R. Hatzenbeler, E. E. Emmons & M. D. Staggs, 1999. Cumulative effects of incremental shoreline habitat modification on fish assemblages in north temperate lakes. North American Journal of Fisheries Management 19: 18–27.

    Article  Google Scholar 

  • Jennings, M. J., E. E. Emmons, G. R. Hatzenbeler, C. Edwards & M. A. Bozek, 2003. Is littoral habitat affected by residential development and land use in watersheds of Wisconsin lakes? Lake and Reservoir Management 19: 272–279.

    Article  Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342(343): 151–164.

    Article  Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen & F. Landkildehus, 2000. Trophic structure, species richness and biodiversity in Danish lakes: changes along a nutrient gradient. Freshwater Biology 45: 201–219.

    Article  CAS  Google Scholar 

  • Johansson, L., 1987. Experimental evidence for interactive habitat segregation between roach (Rutilus rutilus) and rudd (Scardinius erythrophthalmus). Oecologia 73: 21–27.

    Article  Google Scholar 

  • Jüttner, F., D. Backhaus, U. Matthias, U. Essers, R. Greiner & B. Mahr, 1995. Emissions of two- and four-stroke outboard engines – II. Impact on water quality. Water Research 29: 1983–1987.

    Article  Google Scholar 

  • Kahl, U., S. Hülsmann, R. Radke & J. Benndorf, 2008. The impact of water level fluctuations on the year class strength of roach: implications for fish stock management. Limnologica 38: 258–268.

    Article  Google Scholar 

  • Karsson, J. & P. Byström, 2005. Littoral energy mobilization dominates energy supply for top consumers in subarctic lakes. Limnology and Oceanography 50: 538–543.

    Article  Google Scholar 

  • Lauridsen, T. L. & I. Buenk, 1996. Diel changes in the horizontal distribution of zooplankton in the littoral zone of two shallow eutrophic lakes. Archiv für Hydrobiologie 137: 167–176.

    Google Scholar 

  • Lawa, 1998. Gewässerbewertung – stehende Gewässer. Länderarbeitsgemeinschaft Wasser, Kulturbuchverlag, Berlin.

  • Lewin, W. C., N. Okun & T. Mehner, 2004. Determinants of the distribution of juvenile fish in the littoral area of a shallow lake. Freshwater Biology 4: 410–424.

    Article  Google Scholar 

  • Liddle, M. J. & H. R. A. Scorgie, 1980. The effects of recreation on freshwater plants and animals: a review. Biological Conservation 17: 183–206.

    Article  Google Scholar 

  • Lynch, W. E. & D. L. Johnson, 1989. Influences of interstice size, shade, and predators on the use of artificial structures by bluegills. North American Journal of Fisheries Management 9: 219–225.

    Article  Google Scholar 

  • Marburg, A. E., M. G. Turner & T. K. Kratz, 2006. Natural and anthropogenic variation in coarse wood among and within lakes. Journal of Ecology 94: 558–568.

    Article  Google Scholar 

  • Mehner, T., M. Diekmann, U. Brämick & R. Lemcke, 2005. Composition of fish communities in German lakes as related to lake morphology, trophic state, shore structure and human-use intensity. Freshwater Biology 50: 70–85.

    Article  CAS  Google Scholar 

  • Naiman, R. J. & H. Décamps, 1997. The ecology of interfaces: riparian zones. Annual Review of Ecology and Systematics 28: 621–658.

    Article  Google Scholar 

  • Nate, N., M. Bozek, M. J. Hansen & S. W. Hewett, 2000. Variation in walleye abundance with lake size and recruitment source. North American Journal of Fisheries Management 20: 119–126.

    Article  Google Scholar 

  • O’Toole, A. C., K. C. Hanson & S. J. Cooke, 2009. The effect of shoreline recreational angling activities on aquatic and riparian habitat within an urban environment: implications for conservation and management. Environmental Management 44: 324–334.

    Article  PubMed  Google Scholar 

  • Okun, N. & T. Mehner, 2005. Distribution and feeding of juvenile fish on invertebrates in littoral reed (Phragmites) stands. Ecology of Freshwater Fish 14: 139–149.

    Article  Google Scholar 

  • Olden, J. D. & D. A. Jackson, 2001. Fish-habitat relationships in lakes: gaining predictive and explanatory insight by using artificial neural networks. Transactions of the American Fisheries Society 130: 878–897.

    Article  Google Scholar 

  • Olin, M., M. Rask, J. Ruuhijärvi, M. Kurkilahti, P. Ala-Opas & O. Ylönen, 2002. Fish community structure in mesotrophic and eutrophic lakes of southern Finland: the relative abundances of percids and cyprinids along a trophic gradient. Journal of Fish Biology 60: 593–612.

    Article  Google Scholar 

  • Persson, L., S. Diehl, L. Johansson, G. Andersson & S. F. Hamrin, 1991. Shifts in fish communities along the productivity gradient of temperate lakes – patterns and the importance of size-structured interactions. Journal of Fish Biology 38: 281–293.

    Article  Google Scholar 

  • Polis, G. A., W. B. Anderson & R. D. Holt, 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28: 289–316.

    Article  Google Scholar 

  • Quantum GIS Development Team, 2011. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org.

  • R Development Core Team, 2009. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.

  • Radomski, P. & T. J. Goeman, 2001. Consequences of human lakeshore development on emergent and floating-leaf vegetation abundance. North American Journal of Fisheries Management 21: 46–61.

    Article  Google Scholar 

  • Randall, R. G., C. K. Minns, V. W. Cairns & J. E. Moore, 1996. The relationship between an index of fish production and submerged macrophytes and other habitat features at three littoral areas in the Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 53(Suppl. 1): 35–44.

    Article  Google Scholar 

  • Ridgeway, G., 2004. Generalized Boosted Models: a guide to the gbm package.

  • Rosenberger, E. E., S. E. Hampton, S. C. Fradkin & B. P. Kennedy, 2008. Effects of shoreline development on the nearshore environment in large deep oligotrophic lakes. Freshwater Biology 53: 1673–1691.

    Article  Google Scholar 

  • Savino, J. F. & R. A. Stein, 1982. Behavior of fish predators and their prey: habitat choice between open water and dense vegetation. Environmental Biology of Fishes 24: 287–293.

    Article  Google Scholar 

  • Scheuerell, M. D. & D. E. Schindler, 2004. Changes in the spatial distribution of fishes in lakes along a residential development gradient. Ecosystems 7: 98–106.

    Article  Google Scholar 

  • Schiemer, F., M. Zalewski & J. E. Thorpe, 1995. Land/inland water ecotones: intermediate habitats critical for conservation and management. Hydrobiologia 303: 259–264.

    Article  Google Scholar 

  • Schindler, D. E. & M. D. Scheuerell, 2002. Habitat coupling in lake ecosystems. Oikos 98: 177–189.

    Article  Google Scholar 

  • Schindler, D. E., S. I. Geib & M. R. Williams, 2000. Patterns of fish growth along a residential development gradient in North temperate lakes. Ecosystems 3: 229–237.

    Article  Google Scholar 

  • Sih, A., G. Englund & D. Wooster, 1998. Emergent impacts of multiple predators on prey. Trends in Ecology and Evolution 13: 350–355.

    Article  PubMed  CAS  Google Scholar 

  • Smokorowski, K. E. & T. C. Pratt, 2007. Effect of a change in physical structure and cover on fish and fish habitat in freshwater ecosystems – a review and meta-analysis. Environmental Reviews 15: 15–41.

    Article  Google Scholar 

  • Søndergaard, M., E. Jeppesen & J. P. Jensen, 2005. Pond or lake: does it make any difference? Archiv für Hydrobiologie 162: 143–165.

    Article  Google Scholar 

  • Strayer, D. L. & S. E. G. Findlay, 2010. Ecology of freshwater shore zones. Aquatic Sciences 72: 127–163.

    Article  CAS  Google Scholar 

  • Sukopp, H. & B. Markstein, 1989. Changes of the reed beds along the Berlin Havel, 1962-1987. Aquatic Botany 35: 27–39.

    Article  Google Scholar 

  • Sutela, T., T. Vehanen & M. Rask, 2011. Assessment of the ecological status of regulated lakes: stressor-specific metrics from littoral fish assemblages. Hydrobiologia 675: 55–64.

    Article  Google Scholar 

  • Taillon, D. & M. Fox, 2004. The influence of residential and cottage development on littoral zone fish communities in a mesotrophic north temperate lake. Environmental Biology of Fishes 71: 275–285.

    Article  Google Scholar 

  • Trial, P. F., F. P. Gelwick & M. A. Webb, 2001. Effects of shoreline urbanization on littoral fish assemblages. Journal of Lake and Reservoir Management 17: 127–138.

    Article  Google Scholar 

  • Vadeboncoeur, Y., D. M. Lodge & S. R. Carpenter, 2001. Whole-lake fertilization effects on the distribution of primary production between benthic and pelagic habitats. Ecology 82: 1065–1077.

    Article  Google Scholar 

  • Vadeboncoeur, Y., M. J. Vander Zanden & D. M. Lodge, 2002. Putting the lake back together: reintegrating benthic pathways into lake food web models. BioScience 52: 44–54.

    Article  Google Scholar 

  • Vadeboncoeur, Y., E. Jeppesen, J. Vander Zanden, H.-H. Schierup, L. Christofferson & D. M. Lodge, 2003. From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography 48: 1408–1418.

    Article  Google Scholar 

  • Vadeboncoeur, Y., G. Peterson, M. J. Vander Zanden & J. Kalff, 2008. Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light. Ecology 89: 2542–2552.

    Article  PubMed  Google Scholar 

  • Vander Zanden, M. J. & Y. Vadeboncoeur, 2002. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83: 2152–2161.

    Article  Google Scholar 

  • Walsh, S. E., P. A. Soranno & D. T. Rutledge, 2003. Lakes, wetlands, and streams as predictors of land use/cover distribution. Environmental Management 31: 198–214.

    Article  PubMed  CAS  Google Scholar 

  • Werner, E. E. & D. J. Hall, 1988. Ontogenetic habitat shifts in bluegill: the foraging rate-predation risk trade-off. Ecology 69: 1352–1366.

    Article  Google Scholar 

  • Wetzel, R. G., 1990. Land-water interfaces: metabolic and limnological regulators. Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 24: 6–24.

    Google Scholar 

  • Wysocki, L. E., J. P. Dittami & F. Ladich, 2006. Ship noise and cortisol secretion in European freshwater fishes. Biological Conservation 128: 501–508.

    Article  Google Scholar 

Download references

Acknowledgments

The study was financed by the German Federal Ministry of Education and Research (BMBF, grant no. 0330031) and by the German Ministry of Infrastructure and Agriculture of Brandenburg. We thank I. Borgmann, R. Frenzel, T. Rohde, A. Türck, and F. Weichler for their help during the sampling survey and the two anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.-C. Lewin.

Additional information

Handling editor: Mariana Meerhoff

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewin, WC., Mehner, T., Ritterbusch, D. et al. The influence of anthropogenic shoreline changes on the littoral abundance of fish species in German lowland lakes varying in depth as determined by boosted regression trees. Hydrobiologia 724, 293–306 (2014). https://doi.org/10.1007/s10750-013-1746-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1746-8

Keywords

Navigation