Skip to main content

Advertisement

Log in

Vegetation and soil characteristics as indicators of restoration trajectories in restored mangroves

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We investigated the restoration trajectories in vegetation and soil parameters of monospecific Rhizophora mucronata stands planted 6, 8, 10, 11, 12, 17, 18, and 50 years ago (restored system). We tested the hypothesis that the changes in vegetation characteristics, with progressing mangrove age, are related to the changes in soil characteristics. The vegetation and soil parameters were compared across this restoration sequence using a reference system comprising mature, natural mangrove stands of unknown age. Rapid increases in leaf area index and aboveground biomass, and declines in tree density and size (in terms of tree diameter and height) occurred with increasing stand age. Soil organic matter, total nitrogen, and soil redox potential increased, and soil temperature decreased as stands aged. These patterns tended to stabilize at approximately the 11th year, indicating the probable age that restoration plots tend toward forest maturity. The time for the restored systems to reach forest maturity, attaining characteristics similar to the reference system, is estimated at 25 years, which is relatively slow compared to forest regeneration trajectories estimated for natural mangroves. Our study describes the trajectory patterns for planted mangroves, which are important for the assessment of both the progress and success of mangrove rehabilitation programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aksornkoae, S., 1996. Reforestation of mangrove forests in Thailand. In Field, C. D. (ed.), Restoration of Mangrove Ecosystems. International Society for Mangrove Ecosystems, Okinawa: 52–63.

    Google Scholar 

  • Alongi, D. M., 2009. The Energetics of Mangrove Forests. Springer, Townsville: 216 pp.

    Google Scholar 

  • Analuddin, K., R. Suwa & K. Hagihara, 2009. The self-thinning process in mangrove Kandelia obovata stands. Journal of Plant Research 122: 53–59.

    Article  PubMed  Google Scholar 

  • Araujo, R. J., J. C. Jaramillo & S. C. Snedaker, 1997. LAI and leaf size differences in two red mangrove forest types in South Florida. Bulletin of Marine Science 60(3): 643–647.

    Google Scholar 

  • Baldwin, A., M. Egnotovich & W. Platt, 2001. Regeneration in fringe mangrove forests damaged by Hurricane Andrew. Plant Ecology 157: 149–162.

    Article  Google Scholar 

  • Barbier, E. B., 2006. Natural barriers to natural disasters: replanting mangroves after the tsunami. Frontiers in Ecology and the Environment 4(3): 124–131.

    Article  Google Scholar 

  • Bosire, J. O., F. Dahdouh-Guebas, J. G. Kairo & N. Koedam, 2003. Colonization of non-planted mangrove species into restored mangrove stands in Gazi Bay, Kenya. Aquatic Botany 76: 267–279.

    Article  Google Scholar 

  • Bosire, J. O., F. Dahdouh-Guebas, J. G. Kairo, J. M. Kazungu, F. Dehairs & N. Koedam, 2005. Litter degradation and CN dynamics in reforested mangrove plantations at Gazi Bay, Kenya. Biological Conservation 126: 287–295.

    Article  Google Scholar 

  • Bosire, J. O., F. Dahdouh-Guebas, M. Walton, B. I. Crona, R. R. Lewis III, C. Field & N. Koedam, 2008. Functionality of restored mangroves – a review. Aquatic Botany 89: 251–259.

    Article  Google Scholar 

  • Boto, K. G., 1984. Waterlogged saline soils. In Snedaker, S. C. & J. C. Snedaker (eds), The Mangrove Ecosystem: Research Methods. UNESCO, Paris: 114–130.

    Google Scholar 

  • Boto, K. G. & J. T. Wellington, 1984. Soil characteristics and nutrient status in a northern Australian mangrove forest. Estuaries 7: 61–69.

    Article  CAS  Google Scholar 

  • Bouillon, S., 2011. Carbon cycle: storage beneath mangroves. Nature Geoscience 4: 282–283.

    Article  CAS  Google Scholar 

  • Bray, R. H. & L. T. Kurtz, 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Science 59: 39–45.

    Article  CAS  Google Scholar 

  • Cardona, P. & L. Botero, 1998. Soil characteristics and vegetation structure in a heavily deteriorated mangrove forest in the Caribbean coast of Colombia. Biotropica 30(1): 24–34.

    Article  Google Scholar 

  • Chan, H. T., 1996. Mangrove reforestation in Peninsular Malaysia: a case study of Matang. In Field, C. D. (ed.), Restoration of Mangrove Ecosystems. International Society of Mangrove Ecosystems, Okinawa: 64–75.

    Google Scholar 

  • Chapman, M. G. & T. J. Tolhurst, 2007. Relationships between benthic macrofauna and biogeochemical properties of sediments at different spatial scales and among different habitats in mangrove forests. Journal of Experimental Marine Biology and Ecology 343: 96–109.

    Article  CAS  Google Scholar 

  • Chazdon, R. L., 2003. Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives in Plant Ecology Evolution and Systematics 6/1(2): 51–71.

    Article  Google Scholar 

  • Chen, R. & R. R. Twilley, 1998. A gap dynamic model of mangrove forest development along gradients of soil salinity and nutrient resources. The Journal of Ecology 86(1): 37–51.

    Article  Google Scholar 

  • Chen, R. & R. R. Twilley, 1999. Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River Estuary, Florida. Estuaries 22(4): 955–970.

    Google Scholar 

  • Clarke, P. J., 1995. The population dynamics of the mangrove Avicennia marina: demographic synthesis and predictive modelling. Hydrobiologia 295: 83–88.

    Article  Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth.

    Google Scholar 

  • Clough, B. F., 1998. Mangrove forest productivity and biomass accumulation in Hinchinbrook Channel, Australia. Mangroves and Salt Marshes 2: 191–198.

    Article  Google Scholar 

  • Clough, B. F., J. E. Ong & W. K. Gong, 1997. Estimating leaf area index and photosynthetic production in canopies of the mangrove Rhizophora apiculata. Marine Ecology Progress Series 159: 285–292.

    Article  Google Scholar 

  • Clough, B., D. T. Tan, D. X. Phuong & D. C. Buu, 2000. Canopy leaf area index and litter fall in stands of the mangrove Rhizophora apiculata of different age in the Mekong Delta, Vietnam. Aquatic Botany 66: 311–320.

    Article  Google Scholar 

  • Cohen, M. C. L., R. J. Lara, J. F. D. Ramos & T. Dittmar, 1999. Factors influencing the variability of Mg, Ca and K in waters of a mangrove creek in Braganca, North Brazil. Mangroves and Salt Marshes 3: 9–15.

    Article  Google Scholar 

  • Colonello, G. & E. Medina, 1998. Vegetation changes induced by dam construction in a tropical estuary: the case of the Manamo river, Orinoco Delta (Venezuela). Plant Ecology 139: 145–154.

    Article  Google Scholar 

  • Connell, J. H., 1978. Diversity in tropical rain forests and coral reefs. Science 199(4335): 1302–1310.

    Article  PubMed  CAS  Google Scholar 

  • Crona, B. I. & P. Ronnback, 2005. Use of replanted mangroves as nursery grounds by shrimp communities in Gazi Bay, Kenya. Estuarine, Coastal and Shelf Science 65(3): 535–544.

    Article  Google Scholar 

  • De Boer, T. A., 1983. Vegetation as an indicator of environmental changes. Environmental Monitoring and Assessment 3: 375–380.

    Article  Google Scholar 

  • Donato, D. C., J. B. Kauffman, D. Murdiyarso, S. Kurnianto, M. Stidham & M. Kanninen, 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 4: 293–297.

    Article  CAS  Google Scholar 

  • Duarte, C. M., O. Geertz-Hansen, U. Thampanya, J. Terrados, M. D. Fortes, L. Kamp-Nielsen, J. Borum & S. Boromthanarath, 1998. Relationship between sediment conditions and mangrove Rhizophora apiculata seedling growth and nutrient status. Marine Ecology Progress Series 175: 277–283.

    Article  Google Scholar 

  • Duke, N. C., 2001. Gap creation and regenerative processes driving diversity and structure of mangrove ecosystems. Wetlands Ecology and Management 9: 257–269.

    Article  Google Scholar 

  • Ellison, A. M., 2000. Mangrove restoration: do we know enough? Restoration Ecology 8(3): 219–229.

    Article  Google Scholar 

  • Evans, J., 1999. Planted forests of the wet and dry tropics: their variety, nature, and significance. In Boyle, J. R., J. K. Winjum, K. Kavanagh & E. C. Jensen (eds), Planted Forests: Contributions to the Quest for Sustainable Societies. Kluwer, Dordrecht: 25–36.

    Chapter  Google Scholar 

  • Feller, I. C., 1995. Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecological Monographs 65(4): 477–505.

    Article  Google Scholar 

  • Field, C. D., 1999. Mangrove rehabilitation: choice and necessity. Hydrobiologia 413: 47–52.

    Article  Google Scholar 

  • Fromard, F., H. Puig, E. Mougin, G. Marty, J. L. Bertoulle & L. Cadamuro, 1998. Structure, above-ground biomass and dynamics of mangrove ecosystems: new data from French Guiana. Oecologia 115: 39–53.

    Article  Google Scholar 

  • Green, R. H., 1979. Sampling Design and Statistical Methods for Environmental Biologists. Wiley, New York: 257.

    Google Scholar 

  • Green, E. P., P. J. Mumby, A. J. Edwards, C. D. Clark & A. C. Ellis, 1997. Estimating leaf area index of mangroves from satellite data. Aquatic Botany 58(1): 11–19.

    Article  Google Scholar 

  • Guariguata, M. R. & R. Ostertag, 2001. Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management 148: 185–206.

    Article  Google Scholar 

  • Hong, P. N., 1996. Restoration of mangrove ecosystems in Vietnam: a case study of Can Gio District, Ho Chi Minh City. In Field, C. D. (ed.), Restoration of Mangrove Ecosystems. International Society of Mangrove Ecosystems, Okinawa: 76–96.

    Google Scholar 

  • Hooper, D. U. & P. M. Vitousek, 1997. The effects of plant competition and diversity on ecosystem processes. Science 277: 1302–1305.

    Article  CAS  Google Scholar 

  • Imai, N., M. Takyu, Y. Nakamura & T. Nakamura, 2006. Gap formation and regeneration of tropical mangrove forests in Ranong, Thailand. Plant Ecology 186: 37–46.

    Article  Google Scholar 

  • Ishii, T. & Y. Tateda, 2004. Leaf area index and biomass estimation for mangrove plantation in Thailand. Geoscience and Remote Sensing Symposium. IGARRS’04 Proceedings: 2323–2326.

  • Jimenez, J. A., A. E. Lugo & G. Cintron, 1985. Tree mortality in mangrove forests. Biotropica 17(3): 177–185.

    Article  Google Scholar 

  • Kaly, U. L. & G. P. Jones, 1998. Mangrove restoration: a potential tool for coastal management in tropical developing countries. Ambio 27(8): 656–661.

    Google Scholar 

  • Kathiresan, K. & B. L. Bingham, 2001. Biology of mangroves and mangrove ecosystems. Advances in Marine Biology 40: 81–251.

    Article  Google Scholar 

  • Katon, B. M., R. S. Pomeroy, L. R. Garces & M. W. Ring, 2000. Rehabilitating the mangrove resources of Cogtong Bay, Philippines: a co-management perspective. Coastal Management 28(1): 29–37.

    Article  Google Scholar 

  • Kellner, J. R., G. P. Asner, P. M. Vitousek, M. A. Tweiten, S. Hotchkiss & O. A. Chadwick, 2011. Dependence of forest structure and dynamics on substrate age and ecosystem development. Ecosystems 14: 1156–1167.

    Article  Google Scholar 

  • Komiyama, A., K. Ogino, S. Aksornkoae & S. Sabhasri, 1987. Root biomass of a mangrove forest in southern Thailand. 1. Estimation by the trench method and the zonal structure of root biomass. Journal of Tropical Ecology 3: 97–108.

    Article  Google Scholar 

  • Komiyama, A., H. Moriya, S. Prawiroatmodjo, T. Toma & K. Ogino, 1988. Forest primary productivity. In Ogino, K. & M. Chihara (eds), Biological System of Mangrove. Ehime University, Matsuyama: 97–117.

    Google Scholar 

  • Komiyama, A., J. E. Ong & S. Poungparn, 2008. Allometry, biomass and productivity of mangrove forests: a review. Aquatic Botany 89: 128–137.

    Article  Google Scholar 

  • Lewis III, R. R., 2005. Ecological engineering for successful management and restoration of mangrove forests. Ecological Engineering 24(4): 403–418.

  • Lovelock, C. E., B. K. Sorrell, N. Hancock, Q. Hua & A. Swales, 2010. Mangrove forest and soil development on a rapidly accreting shore in New Zealand. Ecosystems 13(3): 437–451.

    Article  CAS  Google Scholar 

  • Masera, O. R., J. F. Garza-Caligaris, M. Kanninen, T. Karjalainen, J. Liski, G. J. Nabuurs, A. Pussinen, B. H. J. de Jong & G. M. J. Mohren, 2003. Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V. 2 approach. Ecological Modelling 164: 177–199.

    Article  CAS  Google Scholar 

  • McKee, K. L., 1993. Soil physicochemical patterns and mangrove species distribution – reciprocal effects? The Journal of Ecology 81(3): 477–487.

    Article  Google Scholar 

  • McKee, K. L., 1995. Interspecific variation in growth, biomass partitioning, and defensive characteristics of neotropical mangrove seedlings: response to light and nutrient availability. American Journal of Botany 82(3): 299–307.

    Article  Google Scholar 

  • McKee, K. L., 2010. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuarine, Coastal and Shelf Science 91(4): 475–483.

    Article  Google Scholar 

  • McKee, K. L., 2011. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuarine, Coastal and Shelf Science 91: 475–483.

    Article  Google Scholar 

  • McKee, K. L. & P. L. Faulkner, 2000. Biogeochemical functioning of restored and natural mangrove forests in Southwest Florida, USA. Restoration Ecology 8: 247–259.

    Article  Google Scholar 

  • Mcleod, E., G. L. Chmura, S. Bouillon, R. Salm, M. Bjork, C. M. Duarte, C. E. Lovelock, W. H. Schlesinger & B. R. Silliman, 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9(10): 552–560.

    Article  Google Scholar 

  • Michener, W. K., 1997. Quantitatively evaluating restoration experiments: research design, statistical analysis, and data management considerations. Restoration Ecology 5(4): 324–337.

    Article  Google Scholar 

  • Milbrandt, E. C., J. M. Greenawalt-Boswell, P. D. Sokoloff & S. A. Bortone, 2006. Impact and response of Southwest Florida mangroves to the 2004 hurricane season. Estuaries and Coasts 29(6): 979–984.

    Google Scholar 

  • Morgan, P. A. & F. T. Short, 2002. Using functional trajectories to track constructed salt marsh development in the Great Bay Estuary, Maine/New Hampshire, USA. Restoration Ecology 10: 461–473.

    Article  Google Scholar 

  • Morrisey, D. J., G. A. Skilleter, J. I. Ellis, B. R. Burns, C. E. Kemp & K. Burta, 2003. Differences in benthic fauna and sediment among mangrove (Avicennia marina var. australasica) stands of different ages in New Zealand. Estuarine, Coastal and Shelf Science 56: 581–592.

    Article  Google Scholar 

  • Nagelkerken, I., S. J. M. Blaber, S. Bouillon, P. Green, M. Haywood, L. G. Kirton, J.-O. Meynecke, J. Pawlik, H. M. Penrose, A. Sasekumar & P. J. Somerfield, 2008. The habitat function of mangroves for terrestrial and marine fauna: a review. Aquatic Botany 89: 155–185.

    Article  Google Scholar 

  • Nelson, D. W. & L. E. Sommers, 1972. A simple digestion procedure for estimation of total nitrogen in soils and sediments. Journal of Environmental Quality 1(4): 423–425.

    Article  CAS  Google Scholar 

  • Nichols, O. G. & F. M. Nichols, 2003. Long-term trends in faunal recolonization after bauxite mining in the jarrah forest of south-western Australia. Restoration Ecology 11: 261–272.

    Article  Google Scholar 

  • Niklas, K. J., J. J. Midgley & R. H. Rand, 2003. Tree size frequency distributions, plant density, age and community disturbance. Ecology Letters 6: 405–411.

    Article  Google Scholar 

  • Oliver, C. D. & B. C. Larson, 1996. Forest Stand Dynamics. Wiley Inc., New York: 520 pp.

    Google Scholar 

  • Ong, J. E., G. W. Khoon & C. H. Wong, 1982. Productivity and nutrient status of litter in a managed mangrove forest in Malaysia. In: Kostermans, A. Y. & S. S. Sastroutomo (eds), Proceedings of the Symposium on Mangrove Forest Ecosystem Productivity in Southeast Asia. BIOTROP Special Publication No. 17, Bogor, Indonesia.

  • Ong, J. E., W. K. Gong & C. H. Wong, 2004. Allometry and partitioning of the mangrove, Rhizophora apiculata. Forest Ecology and Management 188: 395–408.

    Article  Google Scholar 

  • Osland, J. M., A. C. Spivak, J. A. Nestlerode, J. M. Lessmann, A. E. Almario, P. T. Heitmuller, M. J. Russell, K. W. Krauss, F. Alvarez, D. D. Dantin, J. E. Harvey, A. S. From, N. Cormier & C. L. Stagg, 2012. Ecosystem development after mangrove wetland creation: plant–soil change across a 20-year chronosequence. Ecosystems 15: 848–866.

    Article  CAS  Google Scholar 

  • Pernetta, J. C., 1993. Mangrove Forests, Climate Change and Sea Level Rise: Hydrological Influences on Community Structure and Survival, with Examples from the Indo-West Pacific. A Marine Conservation and Development Report. IUCN, Gland, Switzerland.

  • Pickett, S. T. A., 1989. Space-for-time substitution as an alternative to long-term studies. In Likens, G. E. (ed.), Long-Term Studies in Ecology: Approaches and Alternatives. Springer, New York: 110–135.

    Chapter  Google Scholar 

  • Primavera, J. H. & J. M. A. Esteban, 2008. A review of mangrove rehabilitation in the Philippines: successes, failures and future prospects. Wetlands Ecology and Management 16(5): 345–358.

    Article  Google Scholar 

  • Putz, F. E. & H. T. Chan, 1986. Tree growth, dynamics and productivity in a mature mangrove forests in Malaysia. Forest Ecology and Management 17: 211–230.

    Article  Google Scholar 

  • R Development Core Team, 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/. Accessed 30 September 2012.

  • Ramsey, E. W. & J. R. Jensen, 1996. Remote sensing of mangrove wetlands: relating penetration theory and a test case. Journal of Applied Ecology 12: 839–878.

    Google Scholar 

  • Ren, H., S. Jian, H. Lu, Q. Zhang, W. Shen, W. Han, Z. Yin & Q. Guo, 2008. Restoration of mangrove plantations and colonization by native species in Leizhou Bay. South China. Ecological Research 23(2): 401–407.

    Article  Google Scholar 

  • Rivera-Monroy, V. H., R. R. Twilley, E. Medina, E. B. Moser, L. Botero, A. M. Francisco & E. Bullard, 2004. Spatial variability of soil nutrients in disturbed riverine mangrove forests at different stages of regeneration in the San Juan River Estuary, Venezuela. Estuaries 27(1): 44–57.

    Article  CAS  Google Scholar 

  • Ruiz-Jaen, M. C. & T. M. Aide, 2005. Restoration success: how is it being measured? Restoration Ecology 13(3): 569–577.

    Article  Google Scholar 

  • Saenger, P., 2002. Mangrove Ecology, Silviculture and Conservation. Kluwer, Dordrecht: 360.

    Book  Google Scholar 

  • Salmo III, S. G. & N. C. Duke, 2010. Establishing mollusk colonization and assemblage patterns in planted mangrove stands of different ages in Lingayen Gulf, Philippines. Wetlands Ecology and Management 18(6): 745–754.

    Article  Google Scholar 

  • Salmo III, S. G., R. Carranza, M. A. J. Meñez & N. G. Estepa, 1999. Mangrove reforestation program in Bolinao, Pangasinan: partnerships among local and government institutions. Community-Based Strategies in Natural Resources Management. Voluntary Service Overseas, Philippines: 146–151.

  • Salmo III, S. G., D. D. Torio & J. M. A. Esteban, 2007. Evaluation of rehabilitation strategies and management schemes for the improvement of mangrove management programs in Lingayen Gulf. Science Diliman 19(1): 24–34.

    Google Scholar 

  • Samson, M. S. & R. N. Rollon, 2008. Growth performance of planted mangroves in the Philippines: revisiting forest management strategies. Ambio 37(4): 234–240.

    Article  PubMed  Google Scholar 

  • Sherman, R. E., T. J. Fahey & R. W. Howarth, 1998. Soil-plant interactions in a neotropical mangrove forest: iron, phosphorus and sulfur dynamics. Oecologia 115(4): 553–563.

    Article  Google Scholar 

  • Society for Ecological Restoration International Science and Policy Working Group (SER), 2004. The SER International Primer on Ecological Restoration. Society for Ecological Restoration International, Tuczon. http://www.ser.org. Accessed 30 October 2012.

  • Sukardjo, S. & I. Yamada, 1992. Biomass and productivity of a Rhizophora mucronata Lamarck plantation in Tritih, Central Java, Indonesia. Forest Ecology and Management 49: 195–209.

    Article  Google Scholar 

  • Tabuchi, R., 2004. The rehabilitation of mangroves in Southeast Asia. In Saxena, K. G., L. Liang, Y. Kono & S. Miyata (eds), Small-Scale Livelihoods and Natural Resources Management in Marginal Areas: Case Studies in Monsoon Asia. Proceedings of an International Symposium, Tokyo, Japan: 121–128.

  • Tamai, S. & P. Iampa, 1988. Establishment and growth of mangrove seedlings in mangrove forests of Southern Thailand. Ecological Research 3: 227–238.

    Article  Google Scholar 

  • Thom, B. G., 1987. Mangrove environments. In Field, C. D. & A. J. Dartnall (eds), Mangrove Ecosystems of Asia and the Pacific: Status, Exploitation and Management. Proceedings of the Research for Development Seminar held at the Australian Institute of Marine Science, Townsville, Australia: 286–291.

  • Tolhurst, T. J. & M. G. Chapman, 2007. Patterns in biogeochemical properties of sediments and benthic animals among different habitats in mangrove forests. Austral Ecology 32: 775–788.

    Article  Google Scholar 

  • Twilley, R. R., V. H. Rivera-Monroy, R. Chen & L. Botero, 1998. Adapting an ecological mangrove model to simulate trajectories in restoration ecology. Marine Pollution Bulletin 37(8–12): 404–419.

    CAS  Google Scholar 

  • Ukpong, I. E., 1994. Soil–vegetation interrelationships of mangrove swamps as revealed by multivariate analyses. Geoderma 64: 167–181.

    Article  Google Scholar 

  • Vitousek, P. M. & W. A. Reiners, 1975. Ecosystem succession and nutrient retention: a hypothesis. Bioscience 25(6): 376–381.

    Article  CAS  Google Scholar 

  • Walkley, A. & I. A. Black, 1934. An examination of the Degtjareff method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents. Soil Science 63: 251–263.

    Article  Google Scholar 

  • Walters, B. B., 2004. Local management of mangrove forests in the Philippines: successful conservation or efficient resource exploitation? Human Ecology 32(2): 177–195.

    Article  Google Scholar 

  • Walters, B. B., 2005. Ecological effects of small-scale cutting of Philippine mangrove forests. Forest Ecology and Management 206: 331–348.

    Article  Google Scholar 

  • Weilhoefer, C. L., 2010. A review of indicators of estuarine tidal wetland condition. Ecological Indicators 11(2): 514–525.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Ford Foundation-International Fellowship Program (FORD-IFP) and International Foundation for Science (IFS; D/4667-1) for providing financial assistance throughout the study period; the University of Queensland Research Scholarship Grant for providing financial support to SS; the Local Government Units and mangrove managers; and Jack Rengel and Tommy Conzaga for assisting in the field sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Severino G. Salmo III.

Additional information

Handling editor: I.A. Nagelkerken

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salmo, S.G., Lovelock, C. & Duke, N.C. Vegetation and soil characteristics as indicators of restoration trajectories in restored mangroves. Hydrobiologia 720, 1–18 (2013). https://doi.org/10.1007/s10750-013-1617-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1617-3

Keywords

Navigation