Skip to main content
Log in

Cascading effects of flow reduction on the benthic invertebrate community in a lowland river

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Reduction of flow constitutes one of the most severe human alterations to rivers, as it affects the key abiotic feature of these ecosystems. While there has been considerable progress in understanding the effects of reduced flow on benthic macroinvertebrates, cascading effects of flow reduction on dissolved oxygen concentrations (DO) have not yet received much attention. We compared the macroinvertebrate composition between reference conditions and a situation after several years of discharge reduction in the Spree River (Brandenburg, Germany). Community composition shifted from rheophilic species to species indifferent to flow conditions. Filter feeders were partially replaced by collector/gatherers, which likely reduces the retention of organic matter, and thus the self-purification capacity of the river section. These shifts were associated with low discharge during summer, cascading into daily DO concentration minima of less than 5 mg l−1 which prevailed 74% of the days in summer. This depletion of DO after flow reduction presumably caused the observed species turnover. Hence, flow reduction in lowland rivers may not only directly impair the ecological functions provided by benthic macroinvertebrates but may also act indirectly by depleting DO concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander, J. E. & R. F. McMahon, 2004. Respiratory response to temperature and hypoxia in the zebra mussel Dreissena polymorpha. Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology 137: 425–434.

    Article  Google Scholar 

  • Armitage, P. D. & G. E. Petts, 1991. Biotic score and prediction to assess the effects of water abstractions on river macroinvertebrates for conservation purposes. Aquatic Conservation: Marine and Freshwater Ecosystems 2: 1–17.

    Article  Google Scholar 

  • Bayne, B. L., 2009. Carbon and nitrogen relationships in the feeding and growth of the Pacific oyster, Crassostrea gigas (Thunberg). Journal of Experimental Marine Biology and Ecology 374: 19–30.

    Article  CAS  Google Scholar 

  • Bickerton, M. A., 1995. Long-term changes of macroinvertebrate communities in relation to flow variations—the River Glen, Lincolnshire, England. Regulated Rivers-Research & Management 10: 81–92.

    Article  Google Scholar 

  • Botta-Dukát, Z., 2005. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science 16: 533–540.

    Article  Google Scholar 

  • Brunke, M., A. Hoffmann & M. Pusch, 2001. Use of mesohabitat-specific relationships between flow velocity and river discharge to assess invertebrate minimum flow requirements. Regulated Rivers-Research & Management 17: 667–676.

    Article  Google Scholar 

  • Canadian Council of Ministers of the Environment, 1999. Canadian water quality guidelines for the protection of aquatic life: dissolved oxygen (freshwater). Canadian environmental quality guidelines.

  • Castella, E., E. Bickerton, P. D. Armitage & G. E. Petts, 1995. The effects of water abstractions on invertebrate communities in U.K. streams. Hydrobiologia 308: 167–182.

    Article  Google Scholar 

  • Cazaubon, A. & J. Giudicelli, 1999. Impact of the residual flow on the physical characteristics and benthic community (algae, invertebrates) of a regulated Mediterranean river: The Durance, France. Regulated Rivers-Research & Management 15: 441–461.

    Article  Google Scholar 

  • Chen, L.-Y., A. G. Heath & R. J. Neves, 2001. Comparison of oxygen consumption in freshwater mussels (Unionidae) from different habitats during declining dissolved oxygen concentration. Hydrobiologia 450: 209–214.

    Article  Google Scholar 

  • Connolly, N. M., M. R. Crossland & R. G. Pearson, 2004. Effect of low dissolved oxygen on survival, emergence, and drift of tropical stream macroinvertebrates. Journal of the North American Benthological Society 23: 251–270.

    Article  Google Scholar 

  • Decker, A. S., M. J. Bradford & P. S. Higgins, 2008. Rate of biotic colonization following flow restoration below a diversion dam in the Bridge River, British Columbia. River Research and Applications 24: 876–883.

    Article  Google Scholar 

  • Dewson, Z. S., A. B. W. James & R. G. Death, 2007. A review of the consequences of decreased flow for instream habitat and macroinvertebrates. Journal of the North American Benthological Society 26: 401–415.

    Article  Google Scholar 

  • Dunbar, M. J., M. L. Pedersen, D. Cadman, C. Extence, J. Waddingham, R. Chadd & S. E. Larsen, 2010. River discharge and local-scale physical habitat influence macroinvertebrate LIFE scores. Freshwater Biology 55: 226–242.

    Article  Google Scholar 

  • Dussart, G. B. J., 1979. Sphaerium corneum (L.) and Pisidium spp. Pfeiffer – the ecology of freshwater bivalve molluscs in relation to water chemistry. Journal of Molluscan Studies 45: 19–34.

    Google Scholar 

  • Gergs, R., K. Rinke & K. O. Rothhaupt, 2009. Zebra mussels mediate benthic-pelagic coupling by biodeposition and changing detrital stoichiometry. Freshwater Biology 54: 1379–1391.

    Article  Google Scholar 

  • Harris, R. R. & I. B. Musko, 1999. Oxygen consumption, hypoxia, and tube-dwelling in the invasive amphipod Corophium curvispinum. Journal of Crustacean Biology 19: 224–234.

    Article  CAS  Google Scholar 

  • Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P. D. Jones & M. New, 2008. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. Journal of Geophysical Research 113: D20119.

    Article  Google Scholar 

  • Horrigan, N. & D. J. Baird, 2008. Trait patterns of aquatic insects across gradients of flow-related factors: a multivariate analysis of Canadian national data. Canadian Journal of Fisheries and Aquatic Sciences 65: 670–680.

    Article  Google Scholar 

  • Jowett, I., 1997. Environmental effects of extreme flows. In Mosley, M. P. & C. P. Pearson (eds), Floods and Droughts: The New Zealand Experience. Caxton Press, Christchurch, New Zealand: 103–116.

    Google Scholar 

  • Joyner-Matos, J., L. J. Chapman, C. A. Downs, T. Hofer, C. Leeuwenburgh & D. Julian, 2007. Stress response of a freshwater clam along an abiotic gradient: too much oxygen may limit distribution. Functional Ecology 21: 344–355.

    Article  Google Scholar 

  • Laliberté, E. & P. Legendre, 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91: 299–305.

    Article  PubMed  Google Scholar 

  • Ledger, M. E., F. K. Edwards, L. E. Brown, A. M. Milner & G. Woodward, 2011. Impact of simulated drought on ecosystem biomass production: an experimental test in stream mesocosms. Global Change Biology 17: 2288–2297.

    Article  Google Scholar 

  • Ledger, M. E., L. E. Brown, F. K. Edwards, A. M. Milner & G. Woodward, 2012. Drought alters the structure and functioning of complex food webs. Nature Climate Change 3: 223–227.

    Google Scholar 

  • Lorenz, S., F. Gabel, N. Dobra & M. T. Pusch, 2012. Modelling the effects of recreational boating on self-purification activity provided by bivalve mollusks in a lowland river. Freshwater Science 82–93.

  • Malmqvist, B. & A. Eriksson, 1995. Benthic insects in Swedish lake-outlet streams : patterns in species richness and assemblage structure. Freshwater Biology 34: 285–296.

    Article  Google Scholar 

  • Malmqvist, B., S. Rundle, C. Brönmark & A. Erlandsson, 1991. Invertebrate colonization of a new, man-made stream in southern Sweden. Freshwater Biology 26: 307–324.

    Article  Google Scholar 

  • McMahon, R. F., 1996. The physiological ecology of the zebra mussel, Dreissena polymorpha, in North America and Europe. American Zoologist 36: 339–363.

    Google Scholar 

  • Miller, S. W., D. Wooster & J. Li, 2007. Resistance and resilience of macroinvertebrates to irrigation water withdrawals. Freshwater Biology 52: 2494–2510.

    Article  Google Scholar 

  • Miltner, R. J., 2010. A method and rationale for deriving nutrient criteria for small rivers and streams in Ohio. Environmental Management 45: 842–855.

    Article  PubMed  Google Scholar 

  • Morrill, J., R. Bales & M. Conklin, 2005. Estimating stream temperature from air temperature: implications for future water quality. Journal of Environmental Engineering 131: 139–146.

    Article  CAS  Google Scholar 

  • Muggeo, V. M. R., 2003. Estimating regression models with unknown break-points. Statistics in Medicine 22: 3055–3071.

    Article  PubMed  Google Scholar 

  • Naddafi, R., P. Eklov & K. Pettersson, 2009. Stoichiometric constraints do not limit successful invaders: zebra mussels in Swedish lakes. PLoS ONE 4: e5345.

    Article  PubMed  Google Scholar 

  • Nebeker, A. V., 1972. Effect of low oxygen concentration on survival and emergence of aquatic insects. Transactions of the American Fisheries Society 101: 675–679.

    Article  Google Scholar 

  • Oksanen J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2011. Vegan: Community Ecology Package.

  • Parr, L. B. & C. F. Mason, 2004. Causes of low oxygen in a lowland, regulated eutrophic river in Eastern England. Science of the Total Environment 321: 273–286.

    Article  PubMed  CAS  Google Scholar 

  • Poepperl, R., 1999. Functional feeding groups of a macroinvertebrate community in a Northern German lake outlet (Lake Belau, Schleswig-Holstein). Limnologica 29: 137–145.

    Article  Google Scholar 

  • Pusch, M. & A. Hoffmann, 2000. Conservation concept for a river ecosystem (River Spree, Germany) impacted by flow abstraction in a large post-mining area. Landscape and Urban Planning 51: 165–176.

    Article  Google Scholar 

  • R Development Core Team, 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  • Richardson, J. S. & R. J. Mackay, 1991. Lake outlets and the distribution of filter feeders – an assessment of hypotheses. Oikos 62: 370–380.

    Article  Google Scholar 

  • Sabater, S., 2008. Alterations of the global water cycle and their effects on river structure, function and services. Freshwater Reviews 1: 75–88.

    Google Scholar 

  • Schmidt-Kloiber, A., W. Graf, A. Lorenz & O. Moog, 2006. The AQEM/STAR taxalist – a pan-European macro-invertebrate ecological database and taxa inventory. Hydrobiologia 566: 325–342.

    Article  Google Scholar 

  • Tachet, H., 2010. Invertébrés d’eau douce: Systématique, biologie, écologie. CNRS, Paris, France.

    Google Scholar 

  • Venohr, M., U. Hirt, J. Hofmann, D. Opitz, A. Gericke, A. Wetzig, S. Natho, F. Neumann, J. Hürdler, M. Matranga, J. Mahnkopf, M. Gadegast & H. Behrendt, 2011. Modelling of nutrient emissions in river systems – MONERIS – methods and background. International Review of Hydrobiology 96: 435–483.

    Article  CAS  Google Scholar 

  • Wanner, S. C., K. Ockenfeld, M. Brunke, H. Fischer & M. Pusch, 2002. The distribution and turnover of benthic organic matter in a lowland river: influence of hydrology, seston load and impoundment. River Research and Applications 18: 107–122.

    Article  Google Scholar 

  • Wood, P. J. & P. D. Armitage, 1999. Sediment deposition in a small lowland stream – management implications. Regulated Rivers-Research & Management 15: 199–210.

    Article  Google Scholar 

  • Wotton, R. S., 1988. Very high secondary production at a lake outlet. Freshwater Biology 2: 341–346.

    Article  Google Scholar 

  • Wotton, R. S., C. P. Joicey & B. Malmqvist, 1996. Spiralling of particles by suspension feeders in a small lake-outlet stream. Canadian Journal of Zoology-Revue Canadienne de Zoologie 74: 758–761.

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to Jürgen Schreiber, Jens Bunzel, Christina Taraschewski and Mark Leszinski for their assistance with the field and laboratory work and to Marianne Graupe, Barbara Meinck, Hannah Winckler and Grit Siegert for the seston measurements. We thank Jens Hürdler for precipitation modeling and the Environmental Agency of Brandenburg (Landesumweltamt Brandenburg) for providing the discharge data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Graeber.

Additional information

Handling editor: Mariana Meerhoff

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 208 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graeber, D., Pusch, M.T., Lorenz, S. et al. Cascading effects of flow reduction on the benthic invertebrate community in a lowland river. Hydrobiologia 717, 147–159 (2013). https://doi.org/10.1007/s10750-013-1570-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1570-1

Keywords

Navigation