Skip to main content
Log in

Experimental evidence for niche segregation in a sister species pair of non-biting midges

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The principle of limiting similarity states that closely related species need to partition resources of the habitat in order to coexist in the same general area. We tested this hypothesis experimentally with a sister species pair of non-biting midges (Chironomus riparius and C. piger) by assessing their relative larval fitness under several concentrations of nitrite and temperature regimes, as suggested by the observed habitat segregation in a previous field study. Both chironomid species often occur in eutrophic habitats like agricultural areas or industrial point source effluents. Based on field observations, we hypothesised C. piger to tolerate higher nitrite concentrations, higher temperatures and larger temperature ranges than C. riparius. As predicted, C. piger coped better with higher nitrite concentrations. Against the expectations, C. riparius had a tendentially higher fitness at both higher constant temperatures and larger daily temperature ranges. However, the interaction of both stressors favoured C. piger in warm high-nitrite habitats thus concurring to the field observations. The complex interaction of candidate environmental factors with antagonistic effects found here emphasises thus the necessity to experimentally assess field observations of niche segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albrecht, M. & N. J. Gotelli, 2001. Spatial and temporal niche partitioning in grassland ants. Oecologia 126: 134–141.

    Article  Google Scholar 

  • Alonso, A. & J. A. Camargo, 2003. Short-term toxicity of ammonia, nitrite, and nitrate to the aquatic snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca). Bulletin of Environmental Contamination and Toxicology 70: 1006–1012.

    Article  PubMed  CAS  Google Scholar 

  • Amarasekare, P., 2003. Competitive coexistence in spatially structured environments: a synthesis. Ecology Letters 6: 1109–1122.

    Article  Google Scholar 

  • Armitage, P. D., P. S. Cranston & L. C. V. Pinder, 1995. The chironomidae: the biology and ecology of non-biting midges. Chapman & Hall, London.

    Google Scholar 

  • Arthur, W., 1987. The niche in competition and evolution. Wiley, New York.

    Google Scholar 

  • Atkins, P. & J. De Paula, 2006. Physical chemistry. Oxford University Press, New York.

    Google Scholar 

  • Attrill, M. J. & M. Power, 2004. Partitioning of temperature resources amongst an estuarine fish assemblage. Estuarine Coastal and Shelf Science 61: 725–738.

    Article  Google Scholar 

  • Bechard, K. M., P. L. Gillis & C. M. Wood, 2008. Acute toxicity of waterborne Cd, Cu, Pb, Ni, and Zn to first-instar Chironomus riparius larvae. Archives of Environmental Contamination and Toxicology 54: 454–459.

    Article  PubMed  CAS  Google Scholar 

  • Braun, V., R. R. Crichton & G. Braunitz, 1968. Hemoglobins.15. Monomeric and dimeric insect hemoglobins (Chironomus thummi). Hoppe-Seylers Zeitschrift Fur Physiologische Chemie 349: 197–210.

    Article  CAS  Google Scholar 

  • Danks, H. V., 1978. Some effects of photoperiod, temperature, and food on emergence in 3 species of Chironomidae (Diptera). Canadian Entomologist 110: 289–300.

    Article  Google Scholar 

  • Darwin, C., 1859. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London.

    Google Scholar 

  • Dietrich, B. & R. Wehner, 2003. Sympatry and allopatry in two desert ant sister species: how do Cataglyphis bicolor and C-savignyi coexist? Oecologia 136: 63–72.

    Article  PubMed  CAS  Google Scholar 

  • Geervliet, J. B. F., M. S. W. Verdel, H. Snellen, J. Schaub, M. Dicke & L. E. M. Vet, 2000. Coexistence and niche segregation by field populations of the parasitoids Cotesia glomerata and C-rubecula in the Netherlands: predicting field performance from laboratory data. Oecologia 124: 55–63.

    Article  Google Scholar 

  • Gunderina, L. I., I. I. Kiknadze, A. G. Istomina, V. D. Gusev & L. A. Miroshnichenko, 2005. Divergence of the polytene chromosome banding sequences as a reflection of evolutionary rearrangements of the genome linear structure. Russian Journal of Genetics 41: 130–137.

    Article  CAS  Google Scholar 

  • Guryev, V., I. Makarevitch, A. Blinov & J. Martin, 2001. Phylogeny of the Genus Chironomus (Diptera) inferred from DNA sequences of mitochondrial cytochrome b and cytochrome oxidase I. Molecular Phylogenetics and Evolution 19: 9–21.

    Article  PubMed  CAS  Google Scholar 

  • Haas, H. S. & K. Strenzke, 1957. Experimentelle untersuchungen über den Einfluß der ionalen Zusammensetzung des mediums auf die entwicklung der analpapillen von Chironomus thummi. Biologisches Zentralblatt 76: 513–528.

    Google Scholar 

  • Hommen, U., 2005. Ableitung von populationswachstumsraten aus Lebensdatenstudien mit Chironomus riparius. Frauenhofer Institut für Molekularbiologie und angewandte Ökologie, Schmallenberg.

    Google Scholar 

  • Hutchinson, G. E., 1957. Population studies – animal ecology and demography – concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415–427.

    Article  Google Scholar 

  • Kahlert, M. & D. Neumann, 1997. Early development of freshwater sponges under the influence of nitrite and pH. Archiv für Hydrobiologie 139: 69–81.

    CAS  Google Scholar 

  • Kelso, B. H. L., D. M. Glass & R. V. Smith, 1999. Toxicity of nitrite to freshwater invertebrates. In Wilson, W. S., A. S. Ball & R. H. Hinton (eds), Managing risks of nitrates to human and the environ environment. Royal Society of Chemistry, Cambridge: 175–188.

    Google Scholar 

  • Langeland, A., J. H. Abeelund, B. Jonsson & N. Jonsson, 1991. Resource partitioning and Niche shift in Arctic Charr Salvelinus-alpinus and Brown Trout Salmo-trutta. Journal of Animal Ecology 60: 895–912.

    Article  Google Scholar 

  • Maier, K. J., P. Kosalwat & A. W. Knight, 1990. Culture of Chironomus decorus (Diptera, Chironomidae) and the effect of temperature on its life-history. Environmental Entomology 19: 1681–1688.

    Google Scholar 

  • Mayr, E., 1942. Systematics and the origin of species. Dover Publications, New York.

    Google Scholar 

  • McArthur, R. L. & R. Levins, 1967. The limiting similarity, convergence and divergence of coexisting species. American Naturalist 101: 377–385.

    Article  Google Scholar 

  • McLachlan, A., 1993. Can 2 species of midge coexist in a single puddle of rainwater. Hydrobiologia 259: 1–8.

    Article  Google Scholar 

  • Meszena, G., M. Gyllenberg, L. Pasztor & J. A. J. Metz, 2006. Competitive exclusion and limiting similarity: a unified theory. Theoretical Population Biology 69: 68–87.

    Article  PubMed  Google Scholar 

  • Nebeker, A. V., M. A. Cairns & C. M. Wise, 1984. Relative sensitivity of Chironomus-tentans life stages to copper. Environmental Toxicology and Chemistry 3: 151–158.

    CAS  Google Scholar 

  • Nemec, S., 2009. Einfluss ausgewählter abiotischer Faktoren auf die relative Fitness der Schwesterarten Chironomus riparius und Chironomus piger. Diploma thesis. Goethe University, Frankfurt am Main.

  • Neumann, D., M. Kramer, I. Raschke & B. Grafe, 2001. Detrimental effects of nitrite on the development of benthic Chironomus larvae, in relation to their settlement in muddy sediments. Archiv für Hydrobiologie 153: 103–128.

    Google Scholar 

  • Nowak, C., D. Jost, C. Vogt, M. Oetken, K. Schwenk & J. Oehlmann, 2007a. Consequences of inbreeding and reduced genetic variation on tolerance to cadmium stress in the midge Chironomus riparius. Aquatic Toxicology 85: 278–284.

    Article  PubMed  CAS  Google Scholar 

  • Nowak, C., C. Vogt, J. B. Diogo & K. Schwenk, 2007b. Genetic impoverishment in laboratory cultures of the test organism Chironomus riparius. Environmental Toxicology and Chemistry 26: 1018–1022.

    Article  PubMed  CAS  Google Scholar 

  • Nowak, C., C. Vogt, M. Pfenninger, K. Schwenk, J. Oehlmann, B. Streit & M. Oetken, 2009. Rapid genetic erosion in pollutant-exposed experimental chironomid populations. Environmental Pollution 157: 881–886.

    Article  PubMed  CAS  Google Scholar 

  • OECD. (2004) Sediment-water chironomid toxicity test using spiked water. OECD guidelines for the testing of chemicals (Original guideline 219, adopted 13 Apr 2004).

  • Oliver, D. R., 1971. Life history of Chironomidae. Annual Review of Entomology 16: 211–230.

    Article  Google Scholar 

  • Pery, A. R. R. & J. Garric, 2006. Modelling effects of temperature and feeding level on the life cycle of the midge Chironomus riparius: an energy-based modelling approach. Hydrobiologia 553: 59–66.

    Article  Google Scholar 

  • Pfenninger, M. & C. Nowak, 2008. Reproductive isolation and ecological niche partition among larvae of the morphologically cryptic sister species Chironomus riparius and C. piger. PLoS ONE 3: e2157.

    Article  PubMed  Google Scholar 

  • Pfenninger, M., C. Nowak, C. Kley, D. Steinke & B. Streit, 2007. Utility of DNA taxonomy and barcoding for the inference of larval community structure in morphologically cryptic Chironomus (Diptera) species. Molecular Ecology 16: 1957–1968.

    Article  PubMed  CAS  Google Scholar 

  • Sankarperumal, G. & T. J. Pandian, 1991. Effect of temperature and chlorella density on growth and metamorphosis of Chironomus circumdatus (Kieffer) (Diptera). Aquatic Insects 13: 167–177.

    Article  Google Scholar 

  • Sher, R. B. & E. J. Shields, 1991. Potato leafhopper (Homoptera, Cicadellidae) oviposition and development under cool fluctuating temperatures. Environmental Entomology 20: 1113–1120.

    Google Scholar 

  • Sibly, R. M. & J. Hone, 2002. Population growth rate and its determinants: an overview. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 357: 1153–1170.

    Article  Google Scholar 

  • Stevens, M. M., 1998. Development and survival of Chironomus tepperi Skuse (Diptera: Chironomidae) at a range of constant temperatures. Aquatic Insects 20: 181–188.

    Article  Google Scholar 

  • Stief, P., D. De Beer & D. Neumann, 2002. Small-scale distribution of interstitial nitrite in freshwater sediment microcosms: the role of nitrate and oxygen availability, and sediment permeability. Microbial Ecology 43: 367–378.

    Article  PubMed  CAS  Google Scholar 

  • Strenzke, K., 1960. Die systematische und ökologische differenzierung der gattung Chironomus. Annales Entomologici Fennici 26: 111–139.

    Google Scholar 

  • Svensson, J. M., 1998. Emission of N2O, nitrification and denitrification in a eutrophic lake sediment bioturbated by Chironomus plumosus. Aquatic Microbial Ecology 14: 289–299.

    Article  Google Scholar 

  • Thienemann, A., 1974. Die Binnengewässer. Band XX: Chironomus. E. Schweizerbart′sche Verlagsbuchhandlung, Stuttgart.

  • Tokeshi, M., 1995. Randomness and aggregation – analysis of dispersion in an epiphytic Chironomus community. Freshwater Biology 33: 567–578.

    Article  Google Scholar 

  • Toquenaga, Y. & K. Fujii, 1991. Contest and scramble competitions in 2 Bruchid species, Callosobruchus analis and C-Phaseoli (Coleoptera, Bruchidae).2. Larval competition experiment. Researches on Population Ecology 33: 129–139.

    Article  Google Scholar 

  • Trewitt, P. M., R. A. Luhm, F. Samad, S. Ramakrishnan, W. Y. Kao & G. Bergtrom, 1995. Molecular evolutionary analysis of the YWVZ/7B Globin gene-cluster of the insect Chironomus thummi. Journal of Molecular Evolution 41: 313–328.

    Article  PubMed  CAS  Google Scholar 

  • Vogt, C., D. Belz, S. Galluba, C. Nowak, M. Oetken & J. Oehlmann, 2007a. Effects of cadmium and tributyltin on development and reproduction of the non-biting midge Chironomus riparius (Diptera) – baseline experiments for future multi-generation studies. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering 42: 1–9.

    Article  CAS  Google Scholar 

  • Vogt, C., C. Nowak, J. B. Diogo, M. Oetken, K. Schwenk & J. Oehlmann, 2007b. Multi-generation studies with Chironomus riparius – effects of low tributyltin concentrations on life history parameters and genetic diversity. Chemosphere 67: 2192–2200.

    Article  PubMed  CAS  Google Scholar 

  • Vogt, C., A. Pupp, C. Nowak, L. S. Jagodzinski, J. Baumann, D. Jost, M. Oetken & J. Oehlmann, 2007c. Interaction between genetic diversity and temperature stress on life-cycle parameters and genetic variability in midge Chironomus riparius populations. Climate Research 33: 207–214.

    Article  Google Scholar 

  • Wiens, J. J. & C. H. Graham, 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annual review of ecology evolution and systematics. Annual Review of Ecology Evolution and Systematics 36: 519–539.

    Article  Google Scholar 

  • Williams, K. A., D. W. J. Green, D. Pascoe & D. E. Gower, 1986. The Acute toxicity of cadmium to different larval stages of Chironomus-riparius (Diptera, Chironomidae) and its ecological significance for pollution regulation. Oecologia 70: 362–366.

    Article  Google Scholar 

Download references

Acknowledgments

The kind assistance of Lucas Jagodzinski, Christiane Frosch and the staff of the Departments Aquatic Ecotoxicology and Ecology & Evolution of the Goethe-Universität Frankfurt am Main is greatly appreciated. We also thank Christian Abel and Simit Patel for language corrections. This research project has been funded by the research funding programme “LOEWE—Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse’s Ministry of Higher Education, Research, and the Arts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Nemec.

Additional information

Handling editor: B. Oertli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemec, S., Heß, M., Nowak, C. et al. Experimental evidence for niche segregation in a sister species pair of non-biting midges. Hydrobiologia 691, 203–212 (2012). https://doi.org/10.1007/s10750-012-1074-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1074-4

Keywords

Navigation