, Volume 651, Issue 1, pp 77-91

Current and substrate preferences of benthic invertebrates in the rivers of the Hindu Kush-Himalayan region as indicators of hydromorphological degradation

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The study introduces an approach to obtaining information about the preferences of benthic invertebrates for substrate and current velocity in a region with little prior knowledge of benthic invertebrates. These preferences are then used for river assessment. Substrate-specific sampling of 271 reference sites was conducted in lower mountainous and lowland areas of the Hindu Kush-Himalaya region. Statistical analysis revealed significant preferences for substrate type and current velocity for 50 taxa of Ephemeroptera, Plecoptera, Trichoptera, Coleoptera, Diptera, Odonata, Mollusca, and Oligochaeta. A 20-point system was developed to assign scores for substrate and current preferences. Scores from seven taxa of Ephemeroptera and Trichoptera revealed low ecological potential in response to habitat alteration. These data were used to develop four preference metrics. The Lithal metric is composed of 34 taxa with significant preferences for stony substrates (fine gravel to bedrock size). The Lithophile metric contains 21 taxa with strong statistical links to stony substrates, which were also found on other substrates. The Lithobiont metric consists of 13 taxa exclusively found on stones. The Lotic metric consists of 11 taxa with significant preferences for moderate-to-fast current velocities. Multi-habitat sampling was conducted at 181 sites reflecting a hydromorphological gradient. The Mann–Whitney U test and box-and-whisker plots were applied to test the relationship of the new metrics to hydromorphological stress. Of the four new metrics, the Lithal, Lithophile, and Lotic were able to detect impacts of hydromorphological degradation.

Guest editors: D. Hering, S. Sharma & O. Moog / Rivers in the Hindu Kush-Himalaya–Ecology and Environmental Assessment