, Volume 600, Issue 1, pp 187-204
Date: 28 Nov 2007

The influence of environmental conditions on the seasonal variation of Microcystis cell density and microcystins concentration in San Francisco Estuary

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

A bloom of the cyanobacteria Microcystis aeruginosa was sampled over the summer and fall in order to determine if the spatial and temporal patterns in cell density, chlorophyll a (chl a) concentration, total microcystins concentration, and percent microcystins composition varied with environmental conditions in San Francisco Estuary. It was hypothesized that the seasonal variation in Microcystis cell density and microcystin concentration was ecologically important because it could influence the transfer of toxic microcystins into the aquatic food web. Sampling for Microcystis cell density, chl a concentration, total microcystins concentration and a suite of environmental conditions was conducted biweekly at nine stations throughout the freshwater tidal and brackish water regions of the estuary between July and November 2004. Total microcystins in zooplankton and clam tissue was also sampled in August and October. Microcystis cell density, chl a concentration and total microcystins concentration varied by an order of magnitude and peaked during August and September when \( {\text{P}}^{{\text{B}}}_{{\text{m}}} \) and αB were high. Low streamflow and high water temperature were strongly correlated with the seasonal variation of Microcystis cell density, total microcystins concentration (cell)−1 and total microcystins concentration (chl a)−1 in canonical correlation analyses. Nutrient concentrations and ratios were of secondary importance in the analysis and may be of lesser importance to seasonal variation of the bloom in this nutrient rich estuary. The seasonal variation of Microcystis density and biomass was potentially important for the structure and function of the estuarine aquatic food web, because total microcystins concentration was high at the base of the food web in mesozooplankton, amphipod, clam, and worm tissue during the peak of the bloom.

Handling editor: D. Hamilton