Skip to main content
Log in

Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Despite significant progress in cardiovascular medicine, myocardial ischemia and infarction, progressing eventually to the final end point heart failure (HF), remain the leading cause of morbidity and mortality in the USA. HF is a complex syndrome that results from any structural or functional impairment in ventricular filling or blood ejection. Ultimately, the heart’s inability to supply the body’s tissues with enough blood may lead to death. Mechanistically, the hallmarks of the failing heart include abnormal energy metabolism, increased production of reactive oxygen species (ROS) and defects in excitation–contraction coupling. HF is a highly dynamic pathological process, and observed alterations in cardiac metabolism and function depend on the disease progression. In the early stages, cardiac remodeling characterized by normal or slightly increased fatty acid (FA) oxidation plays a compensatory, cardioprotective role. However, upon progression of HF, FA oxidation and mitochondrial oxidative activity are decreased, resulting in a significant drop in cardiac ATP levels. In HF, as a compensatory response to decreased oxidative metabolism, glucose uptake and glycolysis are upregulated, but this upregulation is not sufficient to compensate for a drop in ATP production. Elevated mitochondrial ROS generation and ROS-mediated damage, when they overwhelm the cellular antioxidant defense system, induce heart injury and contribute to the progression of HF. Mitochondrial uncoupling proteins (UCPs), which promote proton leak across the inner mitochondrial membrane, have emerged as essential regulators of mitochondrial membrane potential, respiratory activity and ROS generation. Although the physiological role of UCP2 and UCP3, expressed in the heart, has not been clearly established, increasing evidence suggests that these proteins by promoting mild uncoupling could reduce mitochondrial ROS generation and cardiomyocyte apoptosis and ameliorate thereby myocardial function. Further investigation on the alterations in cardiac UCP activity and regulation will advance our understanding of their physiological roles in the healthy and diseased heart and also may facilitate the development of novel and more efficient therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nabel EG, Braunwald E (2012) A tale of coronary artery disease and myocardial infarction. N Engl J Med 366:54–63

    CAS  PubMed  Google Scholar 

  2. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD et al (2012) Executive summary: heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125:188–197

    PubMed  Google Scholar 

  3. Braunwald E (2013) Research advances in heart failure: a compendium. Circ Res 113:633–645

    CAS  PubMed  Google Scholar 

  4. Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J et al (2013) Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail 6:606–619

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Roger VL (2013) Epidemiology of heart failure. Circ Res 113:646–659

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr et al (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 62:e147–e239

    PubMed  Google Scholar 

  7. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD et al (2013) Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 127:e6–e245

    PubMed  Google Scholar 

  8. Mudd JO, Kass DA (2008) Tackling heart failure in the twenty-first century. Nature 451:919–928

    CAS  PubMed  Google Scholar 

  9. Shah AM, Mann DL (2011) In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet 378:704–712

    PubMed Central  CAS  PubMed  Google Scholar 

  10. McMurray JJ, Pfeffer MA (2005) Heart failure. Lancet 365:1877–1889

    PubMed  Google Scholar 

  11. Monnet E, Chachques JC (2005) Animal models of heart failure: What is new? Ann Thorac Surg 79:1445–1453

    PubMed  Google Scholar 

  12. Klocke R, Tian W, Kuhlmann MT, Nikol S (2007) Surgical animal models of heart failure related to coronary heart disease. Cardiovasc Res 74:29–38

    CAS  PubMed  Google Scholar 

  13. Zornoff LA, Paiva SA, Duarte DR, Spadaro J (2009) Ventricular remodeling after myocardial infarction: concepts and clinical implications. Arq Bras Cardiol 92:150–164

    PubMed  Google Scholar 

  14. McMurray JJ (2010) Clinical practice. Systolic heart failure. N Engl J Med 362:228–238

    CAS  PubMed  Google Scholar 

  15. Neubauer S (2007) The failing heart—an engine out of fuel. N Engl J Med 356:1140–1151

    PubMed  Google Scholar 

  16. Ingwall JS (2009) Energy metabolism in heart failure and remodelling. Cardiovasc Res 81:412–419

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Rosca MG, Hoppel CL (2010) Mitochondria in heart failure. Cardiovasc Res 88:40–50

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Abel ED, Doenst T (2011) Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy. Cardiovasc Res 90:234–242

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Azevedo PS, Minicucci MF, Santos PP, Paiva SA, Zornoff LA (2013) Energy metabolism in cardiac remodeling and heart failure. Cardiol Rev 21:135–140

    PubMed  Google Scholar 

  20. Nickel A, Loffler J, Maack C (2013) Myocardial energetics in heart failure. Basic Res Cardiol 108:358

    PubMed  Google Scholar 

  21. Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115:500–508

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Maack C, Bohm M (2011) Targeting mitochondrial oxidative stress in heart failure throttling the afterburner. J Am Coll Cardiol 58:83–86

    CAS  PubMed  Google Scholar 

  23. Santos CX, Anilkumar N, Zhang M, Brewer AC, Shah AM (2011) Redox signaling in cardiac myocytes. Free Radic Biol Med 50:777–793

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Chen AF, Chen DD, Daiber A, Faraci FM, Li H et al (2012) Free radical biology of the cardiovascular system. Clin Sci (Lond) 123:73–91

    CAS  Google Scholar 

  25. Houser SR, Margulies KB (2003) Is depressed myocyte contractility centrally involved in heart failure? Circ Res 92:350–358

    CAS  PubMed  Google Scholar 

  26. Bers DM (2006) Altered cardiac myocyte Ca regulation in heart failure. Physiology (Bethesda) 21:380–387

    CAS  Google Scholar 

  27. Neef S, Maier LS (2013) Novel aspects of excitation–contraction coupling in heart failure. Basic Res Cardiol 108:360

    PubMed  Google Scholar 

  28. Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129

    CAS  PubMed  Google Scholar 

  29. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258

    CAS  PubMed  Google Scholar 

  30. Ventura-Clapier R, Garnier A, Veksler V, Joubert F (2011) Bioenergetics of the failing heart. Biochim Biophys Acta 1813:1360–1372

    CAS  PubMed  Google Scholar 

  31. Luptak I, Balschi JA, Xing Y, Leone TC, Kelly DP et al (2005) Decreased contractile and metabolic reserve in peroxisome proliferator-activated receptor-alpha-null hearts can be rescued by increasing glucose transport and utilization. Circulation 112:2339–2346

    CAS  PubMed  Google Scholar 

  32. Neglia D, De Caterina A, Marraccini P, Natali A, Ciardetti M et al (2007) Impaired myocardial metabolic reserve and substrate selection flexibility during stress in patients with idiopathic dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 293:H3270–H3278

    CAS  PubMed  Google Scholar 

  33. Kolwicz SC Jr, Tian R (2011) Glucose metabolism and cardiac hypertrophy. Cardiovasc Res 90:194–201

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Ingwall JS (2002) ATP and the heart. Kluwer Academic, Norwell, MA

    Google Scholar 

  35. Hoppel CL, Tandler B, Fujioka H, Riva A (2009) Dynamic organization of mitochondria in human heart and in myocardial disease. Int J Biochem Cell Biol 41:1949–1956

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Lemieux H, Hoppel CL (2009) Mitochondria in the human heart. J Bioenerg Biomembr 41:99–106

    CAS  PubMed  Google Scholar 

  37. Ong SB, Hausenloy DJ (2010) Mitochondrial morphology and cardiovascular disease. Cardiovasc Res 88:16–29

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Soubannier V, McBride HM (2009) Positioning mitochondrial plasticity within cellular signaling cascades. Biochim Biophys Acta 1793:154–170

    CAS  PubMed  Google Scholar 

  39. Hausenloy DJ, Ruiz-Meana M (2010) Not just the powerhouse of the cell: emerging roles for mitochondria in the heart. Cardiovasc Res 88:5–6

    CAS  PubMed  Google Scholar 

  40. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148:1145–1159

    CAS  PubMed  Google Scholar 

  41. Brown DA, O’Rourke B (2010) Cardiac mitochondria and arrhythmias. Cardiovasc Res 88:241–249

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Cadenas S, Aragones J, Landazuri MO (2010) Mitochondrial reprogramming through cardiac oxygen sensors in ischaemic heart disease. Cardiovasc Res 88:219–228

    CAS  PubMed  Google Scholar 

  43. Rosca MG, Hoppel CL (2009) New aspects of impaired mitochondrial function in heart failure. J Bioenerg Biomembr 41:107–112

    CAS  PubMed  Google Scholar 

  44. Balaban RS (2012) Perspectives on: SGP symposium on mitochondrial physiology and medicine: metabolic homeostasis of the heart. J Gen Physiol 139:407–414

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Verdejo HE, del Campo A, Troncoso R, Gutierrez T, Toro B et al (2012) Mitochondria, myocardial remodeling, and cardiovascular disease. Curr Hypertens Rep 14:532–539

    CAS  PubMed  Google Scholar 

  46. Dorn GW 2nd (2013) Mitochondrial dynamics in heart disease. Biochim Biophys Acta 1833:233–241

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Ong SB, Hall AR, Hausenloy DJ (2013) Mitochondrial dynamics in cardiovascular health and disease. Antioxid Redox Signal 19:400–414

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Saraste M (1999) Oxidative phosphorylation at the fin de siecle. Science 283:1488–1493

    CAS  PubMed  Google Scholar 

  49. Balaban RS (2009) Domestication of the cardiac mitochondrion for energy conversion. J Mol Cell Cardiol 46:832–841

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435:297–312

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Genova ML, Bianchi C, Lenaz G (2003) Structural organization of the mitochondrial respiratory chain. Ital J Biochem 52:58–61

    CAS  PubMed  Google Scholar 

  52. Benard G, Rossignol R (2008) Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxid Redox Signal 10:1313–1342

    CAS  PubMed  Google Scholar 

  53. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    CAS  PubMed  Google Scholar 

  54. Mitchell P (1979) Keilin’s respiratory chain concept and its chemiosmotic consequences. Science 206:1148–1159

    CAS  PubMed  Google Scholar 

  55. Rolfe DF, Brand MD (1997) The physiological significance of mitochondrial proton leak in animal cells and tissues. Biosci Rep 17:9–16

    CAS  PubMed  Google Scholar 

  56. Affourtit C, Brand MD (2006) Stronger control of ATP/ADP by proton leak in pancreatic beta-cells than skeletal muscle mitochondria. Biochem J 393:151–159

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Brand MD, Pakay JL, Ocloo A, Kokoszka J, Wallace DC et al (2005) The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochem J 392:353–362

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Parker N, Crichton PG, Vidal-Puig AJ, Brand MD (2009) Uncoupling protein-1 (UCP1) contributes to the basal proton conductance of brown adipose tissue mitochondria. J Bioenerg Biomembr 41:335–342

    CAS  PubMed  Google Scholar 

  59. Klingenberg M (1990) Mechanism and evolution of the uncoupling protein of brown adipose tissue. Trends Biochem Sci 15:108–112

    CAS  PubMed  Google Scholar 

  60. Nicholls DG, Rial E (1999) A history of the first uncoupling protein, UCP1. J Bioenerg Biomembr 31:399–406

    CAS  PubMed  Google Scholar 

  61. Klingenberg M, Echtay KS (2001) Uncoupling proteins: the issues from a biochemist point of view. Biochim Biophys Acta 1504:128–143

    CAS  PubMed  Google Scholar 

  62. Sluse FE, Jarmuszkiewicz W (2002) Uncoupling proteins outside the animal and plant kingdoms: functional and evolutionary aspects. FEBS Lett 510:117–120

    CAS  PubMed  Google Scholar 

  63. Azzu V, Brand MD (2010) The on-off switches of the mitochondrial uncoupling proteins. Trends Biochem Sci 35:298–307

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Mailloux RJ, Harper ME (2011) Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med 51:1106–1115

    CAS  PubMed  Google Scholar 

  65. Sluse FE (2012) Uncoupling proteins: molecular, functional, regulatory, physiological and pathological aspects. Adv Exp Med Biol 942:137–156

    CAS  PubMed  Google Scholar 

  66. Echtay KS (2007) Mitochondrial uncoupling proteins–what is their physiological role? Free Radic Biol Med 43:1351–1371

    CAS  PubMed  Google Scholar 

  67. Azzu V, Jastroch M, Divakaruni AS, Brand MD (2010) The regulation and turnover of mitochondrial uncoupling proteins. Biochim Biophys Acta 1797:785–791

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Massion PB, Balligand JL (2007) Relevance of nitric oxide for myocardial remodeling. Curr Heart Fail Rep 4:18–25

    CAS  PubMed  Google Scholar 

  69. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Nediani C, Raimondi L, Borchi E, Cerbai E (2011) Nitric oxide/reactive oxygen species generation and nitroso/redox imbalance in heart failure: from molecular mechanisms to therapeutic implications. Antioxid Redox Signal 14:289–331

    CAS  PubMed  Google Scholar 

  71. Raedschelders K, Ansley DM, Chen DD (2012) The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Pharmacol Ther 133:230–255

    CAS  PubMed  Google Scholar 

  72. Brown GC, Borutaite V (2007) Nitric oxide and mitochondrial respiration in the heart. Cardiovasc Res 75:283–290

    CAS  PubMed  Google Scholar 

  73. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Radi R (2013) Peroxynitrite, a stealthy biological oxidant. J Biol Chem 288:26464–26472

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Zhang Y, Tocchetti CG, Krieg T, Moens AL (2012) Oxidative and nitrosative stress in the maintenance of myocardial function. Free Radic Biol Med 53:1531–1540

    CAS  PubMed  Google Scholar 

  76. Sabri A, Byron KL, Samarel AM, Bell J, Lucchesi PA (1998) Hydrogen peroxide activates mitogen-activated protein kinases and Na+–H+ exchange in neonatal rat cardiac myocytes. Circ Res 82:1053–1062

    CAS  PubMed  Google Scholar 

  77. Wei S, Rothstein EC, Fliegel L, Dell’Italia LJ, Lucchesi PA (2001) Differential MAP kinase activation and Na(+)/H(+) exchanger phosphorylation by H(2)O(2) in rat cardiac myocytes. Am J Physiol Cell Physiol 281:C1542–C1550

    CAS  PubMed  Google Scholar 

  78. Sabri A, Hughie HH, Lucchesi PA (2003) Regulation of hypertrophic and apoptotic signaling pathways by reactive oxygen species in cardiac myocytes. Antioxid Redox Signal 5:731–740

    CAS  PubMed  Google Scholar 

  79. Hausenloy DJ, Wynne AM, Yellon DM (2007) Ischemic preconditioning targets the reperfusion phase. Basic Res Cardiol 102:445–452

    CAS  PubMed  Google Scholar 

  80. Dost T, Cohen MV, Downey JM (2008) Redox signaling triggers protection during the reperfusion rather than the ischemic phase of preconditioning. Basic Res Cardiol 103:378–384

    PubMed Central  PubMed  Google Scholar 

  81. Baseler WA, Dabkowski ER, Williamson CL, Croston TL, Thapa D et al (2011) Proteomic alterations of distinct mitochondrial subpopulations in the type 1 diabetic heart: contribution of protein import dysfunction. Am J Physiol Regul Integr Comp Physiol 300:R186–R200

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Hollander JM, Baseler WA, Dabkowski ER (2011) Proteomic remodeling of mitochondria in heart failure. Congest Heart Fail 17:262–268

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Eager KR, Roden LD, Dulhunty AF (1997) Actions of sulfhydryl reagents on single ryanodine receptor Ca(2+)-release channels from sheep myocardium. Am J Physiol 272:C1908–C1918

    CAS  PubMed  Google Scholar 

  84. Marengo JJ, Hidalgo C, Bull R (1998) Sulfhydryl oxidation modifies the calcium dependence of ryanodine-sensitive calcium channels of excitable cells. Biophys J 74:1263–1277

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Zissimopoulos S, Lai FA (2006) Redox regulation of the ryanodine receptor/calcium release channel. Biochem Soc Trans 34:919–921

    CAS  PubMed  Google Scholar 

  86. Terentyev D, Gyorke I, Belevych AE, Terentyeva R, Sridhar A et al (2008) Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart failure. Circ Res 103:1466–1472

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Shao CH, Rozanski GJ, Nagai R, Stockdale FE, Patel KP et al (2010) Carbonylation of myosin heavy chains in rat heart during diabetes. Biochem Pharmacol 80:205–217

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Adachi T, Weisbrod RM, Pimentel DR, Ying J, Sharov VS et al (2004) S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med 10:1200–1207

    CAS  PubMed  Google Scholar 

  89. Sharov VS, Dremina ES, Galeva NA, Williams TD, Schoneich C (2006) Quantitative mapping of oxidation-sensitive cysteine residues in SERCA in vivo and in vitro by HPLC-electrospray-tandem MS: selective protein oxidation during biological aging. Biochem J 394:605–615

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Tang WH, Kravtsov GM, Sauert M, Tong XY, Hou XY et al (2010) Polyol pathway impairs the function of SERCA and RyR in ischemic-reperfused rat hearts by increasing oxidative modifications of these proteins. J Mol Cell Cardiol 49:58–69

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Erickson JR, Joiner ML, Guan X, Kutschke W, Yang J et al (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133:462–474

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Humphries KM, Juliano C, Taylor SS (2002) Regulation of cAMP-dependent protein kinase activity by glutathionylation. J Biol Chem 277:43505–43511

    CAS  PubMed  Google Scholar 

  93. de Pina MZ, Vazquez-Meza H, Pardo JP, Rendon JL, Villalobos-Molina R et al (2008) Signaling the signal, cyclic AMP-dependent protein kinase inhibition by insulin-formed H2O2 and reactivation by thioredoxin. J Biol Chem 283:12373–12386

    PubMed  Google Scholar 

  94. Burgoyne JR, Eaton P (2009) Transnitrosylating nitric oxide species directly activate type I protein kinase A, providing a novel adenylate cyclase-independent cross-talk to beta-adrenergic-like signaling. J Biol Chem 284:29260–29268

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Prysyazhna O, Rudyk O, Eaton P (2012) Single atom substitution in mouse protein kinase G eliminates oxidant sensing to cause hypertension. Nat Med 18:286–290

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Zima AV, Blatter LA (2006) Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res 71:310–321

    CAS  PubMed  Google Scholar 

  97. Hool LC, Corry B (2007) Redox control of calcium channels: from mechanisms to therapeutic opportunities. Antioxid Redox Signal 9:409–435

    CAS  PubMed  Google Scholar 

  98. Puthanveetil P, Zhang D, Wang Y, Wang F, Wan A et al (2012) Diabetes triggers a PARP1 mediated death pathway in the heart through participation of FoxO1. J Mol Cell Cardiol 53:677–686

    CAS  PubMed  Google Scholar 

  99. Ago T, Liu T, Zhai P, Chen W, Li H et al (2008) A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell 133:978–993

    CAS  PubMed  Google Scholar 

  100. Loor G, Schumacker PT (2008) Role of hypoxia-inducible factor in cell survival during myocardial ischemia-reperfusion. Cell Death Differ 15:686–690

    CAS  PubMed  Google Scholar 

  101. Rey S, Semenza GL (2010) Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc Res 86:236–242

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Burgoyne JR, Mongue-Din H, Eaton P, Shah AM (2012) Redox signaling in cardiac physiology and pathology. Circ Res 111:1091–1106

    CAS  PubMed  Google Scholar 

  103. Varga ZV, Giricz Z, Liaudet L, Hasko G, Ferdinandy P et al (2014) Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. Biochim Biophys Acta. http://www.sciencedirect.com/science/article/pii/S0925443914002075

  104. Yin H, Xu L, Porter NA (2011) Free radical lipid peroxidation: mechanisms and analysis. Chem Rev 111:5944–5972

    CAS  PubMed  Google Scholar 

  105. Houtkooper RH, Vaz FM (2008) Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci 65:2493–2506

    CAS  PubMed  Google Scholar 

  106. Sparagna GC, Lesnefsky EJ (2009) Cardiolipin remodeling in the heart. J Cardiovasc Pharmacol 53:290–301

    CAS  PubMed  Google Scholar 

  107. Claypool SM, Koehler CM (2012) The complexity of cardiolipin in health and disease. Trends Biochem Sci 37:32–41

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Federici A et al (2004) Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ Res 94:53–59

    CAS  PubMed  Google Scholar 

  109. Chen Q, Moghaddas S, Hoppel CL, Lesnefsky EJ (2008) Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria. Am J Physiol Cell Physiol 294:C460–C466

    CAS  PubMed  Google Scholar 

  110. Sparagna GC, Chicco AJ, Murphy RC, Bristow MR, Johnson CA et al (2007) Loss of cardiac tetralinoleoyl cardiolipin in human and experimental heart failure. J Lipid Res 48:1559–1570

    CAS  PubMed  Google Scholar 

  111. Yin H, Zhu M (2012) Free radical oxidation of cardiolipin: chemical mechanisms, detection and implication in apoptosis, mitochondrial dysfunction and human diseases. Free Radic Res 46:959–974

    CAS  PubMed  Google Scholar 

  112. Kagan VE, Chu CT, Tyurina YY, Cheikhi A, Bayir H (2014) Cardiolipin asymmetry, oxidation and signaling. Chem Phys Lipids 179:64–69

    CAS  PubMed  Google Scholar 

  113. Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K et al (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309:481–484

    CAS  PubMed  Google Scholar 

  114. Loch T, Vakhrusheva O, Piotrowska I, Ziolkowski W, Ebelt H et al (2009) Different extent of cardiac malfunction and resistance to oxidative stress in heterozygous and homozygous manganese-dependent superoxide dismutase-mutant mice. Cardiovasc Res 82:448–457

    CAS  PubMed  Google Scholar 

  115. Pohjoismaki JL, Goffart S, Taylor RW, Turnbull DM, Suomalainen A et al (2010) Developmental and pathological changes in the human cardiac muscle mitochondrial DNA organization, replication and copy number. PLoS ONE 5:e10426

    PubMed Central  PubMed  Google Scholar 

  116. Pohjoismaki JL, Boettger T, Liu Z, Goffart S, Szibor M et al (2012) Oxidative stress during mitochondrial biogenesis compromises mtDNA integrity in growing hearts and induces a global DNA repair response. Nucl Acids Res 40:6595–6607

    PubMed Central  PubMed  Google Scholar 

  117. Copeland WC, Longley MJ (2014) Mitochondrial genome maintenance in health and disease. DNA Repair (Amst) 19:190–198

    CAS  Google Scholar 

  118. Kleikers PW, Wingler K, Hermans JJ, Diebold I, Altenhofer S et al (2012) NADPH oxidases as a source of oxidative stress and molecular target in ischemia/reperfusion injury. J Mol Med (Berl) 90:1391–1406

    CAS  Google Scholar 

  119. Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen species. Free Radic Biol Med 47:333–343

    CAS  PubMed  Google Scholar 

  120. Hirst J, Carroll J, Fearnley IM, Shannon RJ, Walker JE (2003) The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim Biophys Acta 1604:135–150

    CAS  PubMed  Google Scholar 

  121. Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191:421–427

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Kudin AP, Bimpong-Buta NY, Vielhaber S, Elger CE, Kunz WS (2004) Characterization of superoxide-producing sites in isolated brain mitochondria. J Biol Chem 279:4127–4135

    CAS  PubMed  Google Scholar 

  123. Lambert AJ, Brand MD (2004) Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Biol Chem 279:39414–39420

    CAS  PubMed  Google Scholar 

  124. Treberg JR, Quinlan CL, Brand MD (2011) Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I). J Biol Chem 286:27103–27110

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Miwa S, Brand MD (2005) The topology of superoxide production by complex III and glycerol 3-phosphate dehydrogenase in Drosophila mitochondria. Biochim Biophys Acta 1709:214–219

    CAS  PubMed  Google Scholar 

  126. Liu SS (2010) Mitochondrial Q cycle-derived superoxide and chemiosmotic bioenergetics. Ann N Y Acad Sci 1201:84–95

    CAS  PubMed  Google Scholar 

  127. Bell EL, Klimova TA, Eisenbart J, Moraes CT, Murphy MP et al (2007) The Q0 site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol 177:1029–1036

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Crofts AR, Holland JT, Victoria D, Kolling DR, Dikanov SA et al (2008) The Q-cycle reviewed: How well does a monomeric mechanism of the bc(1) complex account for the function of a dimeric complex? Biochim Biophys Acta 1777:1001–1019

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Turrens JF, Freeman BA, Levitt JG, Crapo JD (1982) The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch Biochem Biophys 217:401–410

    CAS  PubMed  Google Scholar 

  130. Klimova T, Chandel NS (2008) Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ 15:660–666

    CAS  PubMed  Google Scholar 

  131. Groeger G, Quiney C, Cotter TG (2009) Hydrogen peroxide as a cell-survival signaling molecule. Antioxid Redox Signal 11:2655–2671

    CAS  PubMed  Google Scholar 

  132. Maejima Y, Kuroda J, Matsushima S, Ago T, Sadoshima J (2011) Regulation of myocardial growth and death by NADPH oxidase. J Mol Cell Cardiol 50:408–416

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Byrne JA, Grieve DJ, Bendall JK, Li JM, Gove C et al (2003) Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. Circ Res 93:802–805

    CAS  PubMed  Google Scholar 

  134. Looi YH, Grieve DJ, Siva A, Walker SJ, Anilkumar N et al (2008) Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction. Hypertension 51:319–325

    CAS  PubMed  Google Scholar 

  135. Zhang M, Brewer AC, Schroder K, Santos CX, Grieve DJ et al (2010) NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proc Natl Acad Sci USA 107:18121–18126

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Serrander L, Cartier L, Bedard K, Banfi B, Lardy B et al (2007) NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem J 406:105–114

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Kuroda J, Ago T, Matsushima S, Zhai P, Schneider MD et al (2010) NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci USA 107:15565–15570

    PubMed Central  CAS  PubMed  Google Scholar 

  138. Altenhofer S, Kleikers PW, Radermacher KA, Scheurer P, Rob Hermans JJ et al (2012) The NOX toolbox: validating the role of NADPH oxidases in physiology and disease. Cell Mol Life Sci 69:2327–2343

    PubMed Central  PubMed  Google Scholar 

  139. Altenhofer S, Radermacher KA, Kleikers PW, Wingler K, Schmidt HH (2014) Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxid Redox Signal. http://online.liebertpub.com/doi/pdf/10.1089/ars.2013.5814

  140. Mialet-Perez J, Bianchi P, Kunduzova O, Parini A (2007) New insights on receptor-dependent and monoamine oxidase-dependent effects of serotonin in the heart. J Neural Transm 114:823–827

    CAS  PubMed  Google Scholar 

  141. Edmondson DE, Mattevi A, Binda C, Li M, Hubalek F (2004) Structure and mechanism of monoamine oxidase. Curr Med Chem 11:1983–1993

    CAS  PubMed  Google Scholar 

  142. Kaludercic N, Takimoto E, Nagayama T, Feng N, Lai EW et al (2010) Monoamine oxidase A-mediated enhanced catabolism of norepinephrine contributes to adverse remodeling and pump failure in hearts with pressure overload. Circ Res 106:193–202

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Bates TE, Loesch A, Burnstock G, Clark JB (1995) Immunocytochemical evidence for a mitochondrially located nitric oxide synthase in brain and liver. Biochem Biophys Res Commun 213:896–900

    CAS  PubMed  Google Scholar 

  144. Ghafourifar P, Richter C (1997) Nitric oxide synthase activity in mitochondria. FEBS Lett 418:291–296

    CAS  PubMed  Google Scholar 

  145. Giulivi C, Poderoso JJ, Boveris A (1998) Production of nitric oxide by mitochondria. J Biol Chem 273:11038–11043

    CAS  PubMed  Google Scholar 

  146. Tatoyan A, Giulivi C (1998) Purification and characterization of a nitric-oxide synthase from rat liver mitochondria. J Biol Chem 273:11044–11048

    CAS  PubMed  Google Scholar 

  147. Carreras MC, Peralta JG, Converso DP, Finocchietto PV, Rebagliati I et al (2001) Modulation of liver mitochondrial NOS is implicated in thyroid-dependent regulation of O(2) uptake. Am J Physiol Heart Circ Physiol 281:H2282–H2288

    CAS  PubMed  Google Scholar 

  148. Bates TE, Loesch A, Burnstock G, Clark JB (1996) Mitochondrial nitric oxide synthase: a ubiquitous regulator of oxidative phosphorylation? Biochem Biophys Res Commun 218:40–44

    CAS  PubMed  Google Scholar 

  149. Frandsen U, Lopez-Figueroa M, Hellsten Y (1996) Localization of nitric oxide synthase in human skeletal muscle. Biochem Biophys Res Commun 227:88–93

    CAS  PubMed  Google Scholar 

  150. Koivisto A, Matthias A, Bronnikov G, Nedergaard J (1997) Kinetics of the inhibition of mitochondrial respiration by NO. FEBS Lett 417:75–80

    CAS  PubMed  Google Scholar 

  151. Carreras MC, Melani M, Riobo N, Converso DP, Gatto EM et al (2002) Neuronal nitric oxide synthases in brain and extraneural tissues. Methods Enzymol 359:413–423

    CAS  PubMed  Google Scholar 

  152. Valdez LB, Zaobornyj T, Alvarez S, Bustamante J, Costa LE et al (2004) Heart mitochondrial nitric oxide synthase. Effects of hypoxia and aging. Mol Aspects Med 25:49–59

    CAS  PubMed  Google Scholar 

  153. Kanai AJ, Pearce LL, Clemens PR, Birder LA, VanBibber MM et al (2001) Identification of a neuronal nitric oxide synthase in isolated cardiac mitochondria using electrochemical detection. Proc Natl Acad Sci USA 98:14126–14131

    PubMed Central  CAS  PubMed  Google Scholar 

  154. Elfering SL, Sarkela TM, Giulivi C (2002) Biochemistry of mitochondrial nitric-oxide synthase. J Biol Chem 277:38079–38086

    CAS  PubMed  Google Scholar 

  155. Finocchietto PV, Franco MC, Holod S, Gonzalez AS, Converso DP et al (2009) Mitochondrial nitric oxide synthase: a masterpiece of metabolic adaptation, cell growth, transformation, and death. Exp Biol Med (Maywood) 234:1020–1028

    CAS  Google Scholar 

  156. Lacza Z, Pankotai E, Busija DW (2009) Mitochondrial nitric oxide synthase: current concepts and controversies. Front Biosci 14:4436–4443

    CAS  Google Scholar 

  157. Parihar MS, Nazarewicz RR, Kincaid E, Bringold U, Ghafourifar P (2008) Association of mitochondrial nitric oxide synthase activity with respiratory chain complex I. Biochem Biophys Res Commun 366:23–28

    PubMed Central  CAS  PubMed  Google Scholar 

  158. Navarro A, Bandez MJ, Gomez C, Repetto MG, Boveris A (2010) Effects of rotenone and pyridaben on complex I electron transfer and on mitochondrial nitric oxide synthase functional activity. J Bioenerg Biomembr 42:405–412

    CAS  PubMed  Google Scholar 

  159. Dedkova EN, Seidlmayer LK, Blatter LA (2013) Mitochondria-mediated cardioprotection by trimetazidine in rabbit heart failure. J Mol Cell Cardiol 59:41–54

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Radi R, Cassina A, Hodara R, Quijano C, Castro L (2002) Peroxynitrite reactions and formation in mitochondria. Free Radic Biol Med 33:1451–1464

    CAS  PubMed  Google Scholar 

  161. Castro L, Demicheli V, Tortora V, Radi R (2011) Mitochondrial protein tyrosine nitration. Free Radic Res 45:37–52

    CAS  PubMed  Google Scholar 

  162. Castro L, Rodriguez M, Radi R (1994) Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem 269:29409–29415

    CAS  PubMed  Google Scholar 

  163. Hausladen A, Fridovich I (1994) Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J Biol Chem 269:29405–29408

    CAS  PubMed  Google Scholar 

  164. Tortora V, Quijano C, Freeman B, Radi R, Castro L (2007) Mitochondrial aconitase reaction with nitric oxide, S-nitrosoglutathione, and peroxynitrite: mechanisms and relative contributions to aconitase inactivation. Free Radic Biol Med 42:1075–1088

    CAS  PubMed  Google Scholar 

  165. Radi R, Rodriguez M, Castro L, Telleri R (1994) Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 308:89–95

    CAS  PubMed  Google Scholar 

  166. Poderoso JJ, Carreras MC, Lisdero C, Riobo N, Schopfer F et al (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328:85–92

    CAS  PubMed  Google Scholar 

  167. MacMillan-Crow LA, Crow JP, Thompson JA (1998) Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry 37:1613–1622

    CAS  PubMed  Google Scholar 

  168. Yamakura F, Taka H, Fujimura T, Murayama K (1998) Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem 273:14085–14089

    CAS  PubMed  Google Scholar 

  169. Moreno DM, Marti MA, De Biase PM, Estrin DA, Demicheli V et al (2011) Exploring the molecular basis of human manganese superoxide dismutase inactivation mediated by tyrosine 34 nitration. Arch Biochem Biophys 507:304–309

    CAS  PubMed  Google Scholar 

  170. Xu S, Ying J, Jiang B, Guo W, Adachi T et al (2006) Detection of sequence-specific tyrosine nitration of manganese SOD and SERCA in cardiovascular disease and aging. Am J Physiol Heart Circ Physiol 290:H2220–H2227

    CAS  PubMed  Google Scholar 

  171. Redondo-Horcajo M, Romero N, Martinez-Acedo P, Martinez-Ruiz A, Quijano C et al (2010) Cyclosporine A-induced nitration of tyrosine 34 MnSOD in endothelial cells: role of mitochondrial superoxide. Cardiovasc Res 87:356–365

    CAS  PubMed  Google Scholar 

  172. Abriata LA, Cassina A, Tortora V, Marin M, Souza JM et al (2009) Nitration of solvent-exposed tyrosine 74 on cytochrome c triggers heme iron-methionine 80 bond disruption. Nuclear magnetic resonance and optical spectroscopy studies. J Biol Chem 284:17–26

    PubMed Central  CAS  PubMed  Google Scholar 

  173. Godoy LC, Munoz-Pinedo C, Castro L, Cardaci S, Schonhoff CM et al (2009) Disruption of the M80-Fe ligation stimulates the translocation of cytochrome c to the cytoplasm and nucleus in nonapoptotic cells. Proc Natl Acad Sci USA 106:2653–2658

    PubMed Central  CAS  PubMed  Google Scholar 

  174. Turko IV, Li L, Aulak KS, Stuehr DJ, Chang JY et al (2003) Protein tyrosine nitration in the mitochondria from diabetic mouse heart. Implications to dysfunctional mitochondria in diabetes. J Biol Chem 278:33972–33977

    CAS  PubMed  Google Scholar 

  175. Cong W, Zhao T, Zhu Z, Huang B, Ma W et al (2014) Metallothionein prevents cardiac pathological changes in diabetes by modulating nitration and inactivation of cardiac ATP synthase. J Nutr Biochem 25:463–474

    CAS  PubMed  Google Scholar 

  176. Dennis KE, Hill S, Rose KL, Sampson UK, Hill MF (2013) Augmented cardiac formation of oxidatively-induced carbonylated proteins accompanies the increased functional severity of post-myocardial infarction heart failure in the setting of type 1 diabetes mellitus. Cardiovasc Pathol 22:473–480

    CAS  PubMed  Google Scholar 

  177. Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278–286

    CAS  PubMed  Google Scholar 

  178. Mates JM, Segura JA, Alonso FJ, Marquez J (2012) Oxidative stress in apoptosis and cancer: an update. Arch Toxicol 86:1649–1665

    CAS  PubMed  Google Scholar 

  179. Murphy MP (2012) Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid Redox Signal 16:476–495

    CAS  PubMed  Google Scholar 

  180. Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    CAS  PubMed  Google Scholar 

  181. Abreu IA, Cabelli DE (2010) Superoxide dismutases-a review of the metal-associated mechanistic variations. Biochim Biophys Acta 1804:263–274

    CAS  PubMed  Google Scholar 

  182. Perry JJ, Shin DS, Getzoff ED, Tainer JA (2010) The structural biochemistry of the superoxide dismutases. Biochim Biophys Acta 1804:245–262

    PubMed Central  CAS  PubMed  Google Scholar 

  183. Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349

    CAS  PubMed  Google Scholar 

  184. Byrne JA, Grieve DJ, Cave AC, Shah AM (2003) Oxidative stress and heart failure. Arch Mal Coeur Vaiss 96:214–221

    CAS  PubMed  Google Scholar 

  185. Elchuri S, Oberley TD, Qi W, Eisenstein RS, Jackson Roberts L et al (2005) CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 24:367–380

    CAS  PubMed  Google Scholar 

  186. Perez VI, Bokov A, Van Remmen H, Mele J, Ran Q et al (2009) Is the oxidative stress theory of aging dead? Biochim Biophys Acta 1790:1005–1014

    PubMed Central  CAS  PubMed  Google Scholar 

  187. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    CAS  PubMed  Google Scholar 

  188. Majoor-Krakauer D, Willems PJ, Hofman A (2003) Genetic epidemiology of amyotrophic lateral sclerosis. Clin Genet 63:83–101

    CAS  PubMed  Google Scholar 

  189. Andersen PM (2006) Amyotrophic lateral sclerosis associated with mutations in the CuZn superoxide dismutase gene. Curr Neurol Neurosci Rep 6:37–46

    CAS  PubMed  Google Scholar 

  190. Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC et al (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11:376–381

    CAS  PubMed  Google Scholar 

  191. Lebovitz RM, Zhang H, Vogel H, Cartwright J Jr, Dionne L et al (1996) Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci USA 93:9782–9787

    PubMed Central  CAS  PubMed  Google Scholar 

  192. Melov S, Schneider JA, Day BJ, Hinerfeld D, Coskun P et al (1998) A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase. Nat Genet 18:159–163

    CAS  PubMed  Google Scholar 

  193. Melov S, Coskun P, Patel M, Tuinstra R, Cottrell B et al (1999) Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc Natl Acad Sci USA 96:846–851

    PubMed Central  CAS  PubMed  Google Scholar 

  194. Pohjoismaki JL, Williams SL, Boettger T, Goffart S, Kim J et al (2013) Overexpression of Twinkle-helicase protects cardiomyocytes from genotoxic stress caused by reactive oxygen species. Proc Natl Acad Sci USA 110:19408–19413

    PubMed Central  PubMed  Google Scholar 

  195. Daosukho C, Ittarat W, Lin SM, Sawyer DB, Kiningham K et al (2005) Induction of manganese superoxide dismutase (MnSOD) mediates cardioprotective effect of tamoxifen (TAM). J Mol Cell Cardiol 39:792–803

    CAS  PubMed  Google Scholar 

  196. Ohashi M, Runge MS, Faraci FM, Heistad DD (2006) MnSOD deficiency increases endothelial dysfunction in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 26:2331–2336

    CAS  PubMed  Google Scholar 

  197. Sam F, Kerstetter DL, Pimental DR, Mulukutla S, Tabaee A et al (2005) Increased reactive oxygen species production and functional alterations in antioxidant enzymes in human failing myocardium. J Card Fail 11:473–480

    CAS  PubMed  Google Scholar 

  198. Baumer AT, Flesch M, Wang X, Shen Q, Feuerstein GZ et al (2000) Antioxidative enzymes in human hearts with idiopathic dilated cardiomyopathy. J Mol Cell Cardiol 32:121–130

    CAS  PubMed  Google Scholar 

  199. Dieterich S, Bieligk U, Beulich K, Hasenfuss G, Prestle J (2000) Gene expression of antioxidative enzymes in the human heart: increased expression of catalase in the end-stage failing heart. Circulation 101:33–39

    CAS  PubMed  Google Scholar 

  200. Borchi E, Bargelli V, Stillitano F, Giordano C, Sebastiani M et al (2010) Enhanced ROS production by NADPH oxidase is correlated to changes in antioxidant enzyme activity in human heart failure. Biochim Biophys Acta 1802:331–338

    CAS  PubMed  Google Scholar 

  201. Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208

    CAS  PubMed  Google Scholar 

  202. Kirkman HN, Gaetani GF (2007) Mammalian catalase: a venerable enzyme with new mysteries. Trends Biochem Sci 32:44–50

    CAS  PubMed  Google Scholar 

  203. Nicholls P (2012) Classical catalase: ancient and modern. Arch Biochem Biophys 525:95–101

    CAS  PubMed  Google Scholar 

  204. Radi R, Turrens JF, Chang LY, Bush KM, Crapo JD et al (1991) Detection of catalase in rat heart mitochondria. J Biol Chem 266:22028–22034

    CAS  PubMed  Google Scholar 

  205. Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 70:200–214

    CAS  Google Scholar 

  206. Cao C, Leng Y, Kufe D (2003) Catalase activity is regulated by c-Abl and Arg in the oxidative stress response. J Biol Chem 278:29667–29675

    CAS  PubMed  Google Scholar 

  207. Cao C, Leng Y, Li C, Kufe D (2003) Functional interaction between the c-Abl and Arg protein–tyrosine kinases in the oxidative stress response. J Biol Chem 278:12961–12967

    CAS  PubMed  Google Scholar 

  208. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE et al (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308:1909–1911

    CAS  PubMed  Google Scholar 

  209. Treuting PM, Linford NJ, Knoblaugh SE, Emond MJ, Morton JF et al (2008) Reduction of age-associated pathology in old mice by overexpression of catalase in mitochondria. J Gerontol A Biol Sci Med Sci 63:813–822

    PubMed  Google Scholar 

  210. Dai DF, Santana LF, Vermulst M, Tomazela DM, Emond MJ et al (2009) Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging. Circulation 119:2789–2797

    PubMed Central  CAS  PubMed  Google Scholar 

  211. Dai DF, Chen T, Wanagat J, Laflamme M, Marcinek DJ et al (2010) Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria. Aging Cell 9:536–544

    PubMed Central  CAS  PubMed  Google Scholar 

  212. Ho YS, Xiong Y, Ma W, Spector A, Ho DS (2004) Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J Biol Chem 279:32804–32812

    CAS  PubMed  Google Scholar 

  213. Szabo C, Ischiropoulos H, Radi R (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6:662–680

    CAS  PubMed  Google Scholar 

  214. Winterbourn CC, Hampton MB (2008) Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 45:549–561

    CAS  PubMed  Google Scholar 

  215. Rhee SG, Woo HA, Kil IS, Bae SH (2012) Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J Biol Chem 287:4403–4410

    PubMed Central  CAS  PubMed  Google Scholar 

  216. Cao C, Leng Y, Huang W, Liu X, Kufe D (2003) Glutathione peroxidase 1 is regulated by the c-Abl and Arg tyrosine kinases. J Biol Chem 278:39609–39614

    CAS  PubMed  Google Scholar 

  217. de Haan JB, Bladier C, Griffiths P, Kelner M, O’Shea RD et al (1998) Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J Biol Chem 273:22528–22536

    PubMed  Google Scholar 

  218. Yoshida T, Maulik N, Engelman RM, Ho YS, Magnenat JL et al (1997) Glutathione peroxidase knockout mice are susceptible to myocardial ischemia reperfusion injury. Circulation 96:II-216–II-220

    Google Scholar 

  219. Torzewski M, Ochsenhirt V, Kleschyov AL, Oelze M, Daiber A et al (2007) Deficiency of glutathione peroxidase-1 accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 27:850–857

    CAS  PubMed  Google Scholar 

  220. Brookes PS (2005) Mitochondrial H(+) leak and ROS generation: an odd couple. Free Radic Biol Med 38:12–23

    CAS  PubMed  Google Scholar 

  221. Stowe DF, Camara AK (2009) Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal 11:1373–1414

    PubMed Central  CAS  PubMed  Google Scholar 

  222. Divakaruni AS, Brand MD (2011) The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda) 26:192–205

    CAS  Google Scholar 

  223. Palmieri F (2004) The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch 447:689–709

    CAS  PubMed  Google Scholar 

  224. Sluse FE (1996) Mitochondrial metabolite carrier family, topology, structure and functional properties: an overview. Acta Biochim Pol 43:349–360

    CAS  PubMed  Google Scholar 

  225. el Moualij B, Duyckaerts C, Lamotte-Brasseur J, Sluse FE (1997) Phylogenetic classification of the mitochondrial carrier family of Saccharomyces cerevisiae. Yeast 13:573–581

    PubMed  Google Scholar 

  226. Hughes J, Criscuolo F (2008) Evolutionary history of the UCP gene family: gene duplication and selection. BMC Evol Biol 8:306

    PubMed Central  PubMed  Google Scholar 

  227. Saito S, Saito CT, Shingai R (2008) Adaptive evolution of the uncoupling protein 1 gene contributed to the acquisition of novel nonshivering thermogenesis in ancestral eutherian mammals. Gene 408:37–44

    CAS  PubMed  Google Scholar 

  228. Arechaga I, Ledesma A, Rial E (2001) The mitochondrial uncoupling protein UCP1: a gated pore. IUBMB Life 52:165–173

    CAS  PubMed  Google Scholar 

  229. Modriansky M, Murdza-Inglis DL, Patel HV, Freeman KB, Garlid KD (1997) Identification by site-directed mutagenesis of three arginines in uncoupling protein that are essential for nucleotide binding and inhibition. J Biol Chem 272:24759–24762

    CAS  PubMed  Google Scholar 

  230. Heaton GM, Wagenvoord RJ, Kemp A Jr, Nicholls DG (1978) Brown-adipose-tissue mitochondria: photoaffinity labelling of the regulatory site of energy dissipation. Eur J Biochem 82:515–521

    CAS  PubMed  Google Scholar 

  231. Nicholls DG, Bernson VS, Heaton GM (1978) The identification of the component in the inner membrane of brown adipose tissue mitochondria responsible for regulating energy dissipation. Exp Suppl 32:89–93

    CAS  Google Scholar 

  232. Nicholls DG, Locke RM (1984) Thermogenic mechanisms in brown fat. Physiol Rev 64:1–64

    CAS  PubMed  Google Scholar 

  233. Enerback S, Jacobsson A, Simpson EM, Guerra C, Yamashita H et al (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387:90–94

    CAS  PubMed  Google Scholar 

  234. Krauss S, Zhang CY, Lowell BB (2005) The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol 6:248–261

    CAS  PubMed  Google Scholar 

  235. Cui Y, Xu X, Bi H, Zhu Q, Wu J et al (2006) Expression modification of uncoupling proteins and MnSOD in retinal endothelial cells and pericytes induced by high glucose: the role of reactive oxygen species in diabetic retinopathy. Exp Eye Res 83:807–816

    CAS  PubMed  Google Scholar 

  236. Sale MM, Hsu FC, Palmer ND, Gordon CJ, Keene KL et al (2007) The uncoupling protein 1 gene, UCP1, is expressed in mammalian islet cells and associated with acute insulin response to glucose in African American families from the IRAS Family Study. BMC Endocr Disord 7:1

    PubMed Central  PubMed  Google Scholar 

  237. Fleury C, Neverova M, Collins S, Raimbault S, Champigny O et al (1997) Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet 15:269–272

    CAS  PubMed  Google Scholar 

  238. Pecqueur C, Alves-Guerra MC, Gelly C, Levi-Meyrueis C, Couplan E et al (2001) Uncoupling protein 2, in vivo distribution, induction upon oxidative stress, and evidence for translational regulation. J Biol Chem 276:8705–8712

    CAS  PubMed  Google Scholar 

  239. Azzu V, Affourtit C, Breen EP, Parker N, Brand MD (2008) Dynamic regulation of uncoupling protein 2 content in INS-1E insulinoma cells. Biochim Biophys Acta 1777:1378–1383

    PubMed Central  CAS  PubMed  Google Scholar 

  240. Murray AJ, Anderson RE, Watson GC, Radda GK, Clarke K (2004) Uncoupling proteins in human heart. Lancet 364:1786–1788

    CAS  PubMed  Google Scholar 

  241. Sack MN (2006) Mitochondrial depolarization and the role of uncoupling proteins in ischemia tolerance. Cardiovasc Res 72:210–219

    CAS  PubMed  Google Scholar 

  242. Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A et al (1997) Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett 408:39–42

    CAS  PubMed  Google Scholar 

  243. Vidal-Puig A, Solanes G, Grujic D, Flier JS, Lowell BB (1997) UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochem Biophys Res Commun 235:79–82

    CAS  PubMed  Google Scholar 

  244. Aguirre E, Cadenas S (2010) GDP and carboxyatractylate inhibit 4-hydroxynonenal-activated proton conductance to differing degrees in mitochondria from skeletal muscle and heart. Biochim Biophys Acta 1797:1716–1726

    CAS  PubMed  Google Scholar 

  245. Harper ME, Himms-Hagen J (2001) Mitochondrial efficiency: lessons learned from transgenic mice. Biochim Biophys Acta 1504:159–172

    CAS  PubMed  Google Scholar 

  246. Mailloux RJ, Harper ME (2012) Mitochondrial proticity and ROS signaling: lessons from the uncoupling proteins. Trends Endocrinol Metab 23:451–458

    CAS  PubMed  Google Scholar 

  247. Brand MD, Esteves TC (2005) Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab 2:85–93

    CAS  PubMed  Google Scholar 

  248. Mao W, Yu XX, Zhong A, Li W, Brush J et al (1999) UCP4, a novel brain-specific mitochondrial protein that reduces membrane potential in mammalian cells. FEBS Lett 443:326–330

    CAS  PubMed  Google Scholar 

  249. Sanchis D, Fleury C, Chomiki N, Goubern M, Huang Q et al (1998) BMCP1, a novel mitochondrial carrier with high expression in the central nervous system of humans and rodents, and respiration uncoupling activity in recombinant yeast. J Biol Chem 273:34611–34615

    CAS  PubMed  Google Scholar 

  250. Yu XX, Mao W, Zhong A, Schow P, Brush J et al (2000) Characterization of novel UCP5/BMCP1 isoforms and differential regulation of UCP4 and UCP5 expression through dietary or temperature manipulation. FASEB J 14:1611–1618

    CAS  PubMed  Google Scholar 

  251. Alan L, Smolkova K, Kronusova E, Santorova J, Jezek P (2009) Absolute levels of transcripts for mitochondrial uncoupling proteins UCP2, UCP3, UCP4, and UCP5 show different patterns in rat and mice tissues. J Bioenerg Biomembr 41:71–78

    CAS  PubMed  Google Scholar 

  252. Smorodchenko A, Rupprecht A, Sarilova I, Ninnemann O, Brauer AU et al (2009) Comparative analysis of uncoupling protein 4 distribution in various tissues under physiological conditions and during development. Biochim Biophys Acta 1788:2309–2319

    CAS  PubMed  Google Scholar 

  253. Hanak P, Jezek P (2001) Mitochondrial uncoupling proteins and phylogenesis—UCP4 as the ancestral uncoupling protein. FEBS Lett 495:137–141

    CAS  PubMed  Google Scholar 

  254. Ramsden DB, Ho PW, Ho JW, Liu HF, So DH et al (2012) Human neuronal uncoupling proteins 4 and 5 (UCP4 and UCP5): structural properties, regulation, and physiological role in protection against oxidative stress and mitochondrial dysfunction. Brain Behav 2:468–478

    PubMed Central  PubMed  Google Scholar 

  255. Klingenberg M, Winkler E (1985) The reconstituted isolated uncoupling protein is a membrane potential driven H+ translocator. EMBO J 4:3087–3092

    PubMed Central  CAS  PubMed  Google Scholar 

  256. Winkler E, Klingenberg M (1994) Effect of fatty acids on H+ transport activity of the reconstituted uncoupling protein. J Biol Chem 269:2508–2515

    CAS  PubMed  Google Scholar 

  257. Klingenberg M, Huang SG (1999) Structure and function of the uncoupling protein from brown adipose tissue. Biochim Biophys Acta 1415:271–296

    CAS  PubMed  Google Scholar 

  258. Garlid KD, Orosz DE, Modriansky M, Vassanelli S, Jezek P (1996) On the mechanism of fatty acid-induced proton transport by mitochondrial uncoupling protein. J Biol Chem 271:2615–2620

    CAS  PubMed  Google Scholar 

  259. Rial E, Aguirregoitia E, Jimenez-Jimenez J, Ledesma A (2004) Alkylsulfonates activate the uncoupling protein UCP1: implications for the transport mechanism. Biochim Biophys Acta 1608:122–130

    CAS  PubMed  Google Scholar 

  260. Shabalina IG, Jacobsson A, Cannon B, Nedergaard J (2004) Native UCP1 displays simple competitive kinetics between the regulators purine nucleotides and fatty acids. J Biol Chem 279:38236–38248

    CAS  PubMed  Google Scholar 

  261. Nicholls DG (2001) A history of UCP1. Biochem Soc Trans 29:751–755

    CAS  PubMed  Google Scholar 

  262. Echtay KS, Esteves TC, Pakay JL, Jekabsons MB, Lambert AJ et al (2003) A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J 22:4103–4110

    PubMed Central  CAS  PubMed  Google Scholar 

  263. Murphy MP, Echtay KS, Blaikie FH, Asin-Cayuela J, Cocheme HM et al (2003) Superoxide activates uncoupling proteins by generating carbon-centered radicals and initiating lipid peroxidation: studies using a mitochondria-targeted spin trap derived from α-phenyl-N-tert-butylnitrone. J Biol Chem 278:48534–48545

    CAS  PubMed  Google Scholar 

  264. Esteves TC, Parker N, Brand MD (2006) Synergy of fatty acid and reactive alkenal activation of proton conductance through uncoupling protein 1 in mitochondria. Biochem J 395:619–628

    PubMed Central  CAS  PubMed  Google Scholar 

  265. Parker N, Affourtit C, Vidal-Puig A, Brand MD (2008) Energization-dependent endogenous activation of proton conductance in skeletal muscle mitochondria. Biochem J 412:131–139

    PubMed Central  CAS  PubMed  Google Scholar 

  266. Couplan E, del Mar Gonzalez-Barroso M, Alves-Guerra MC, Ricquier D, Goubern M et al (2002) No evidence for a basal, retinoic, or superoxide-induced uncoupling activity of the uncoupling protein 2 present in spleen or lung mitochondria. J Biol Chem 277:26268–26275

    CAS  PubMed  Google Scholar 

  267. Cannon B, Shabalina IG, Kramarova TV, Petrovic N, Nedergaard J (2006) Uncoupling proteins: a role in protection against reactive oxygen species—or not? Biochim Biophys Acta 1757:449–458

    CAS  PubMed  Google Scholar 

  268. Nicholls DG (2006) The physiological regulation of uncoupling proteins. Biochim Biophys Acta 1757:459–466

    CAS  PubMed  Google Scholar 

  269. Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S et al (2002) Superoxide activates mitochondrial uncoupling proteins. Nature 415:96–99

    CAS  PubMed  Google Scholar 

  270. Considine MJ, Goodman M, Echtay KS, Laloi M, Whelan J et al (2003) Superoxide stimulates a proton leak in potato mitochondria that is related to the activity of uncoupling protein. J Biol Chem 278:22298–22302

    CAS  PubMed  Google Scholar 

  271. Mailloux RJ, Seifert EL, Bouillaud F, Aguer C, Collins S et al (2011) Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3. J Biol Chem 286:21865–21875

    PubMed Central  CAS  PubMed  Google Scholar 

  272. Mailloux RJ, Adjeitey CN, Xuan JY, Harper ME (2012) Crucial yet divergent roles of mitochondrial redox state in skeletal muscle vs. brown adipose tissue energetics. FASEB J 26:363–375

    CAS  PubMed  Google Scholar 

  273. Feldmann HM, Golozoubova V, Cannon B, Nedergaard J (2009) UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 9:203–209

    CAS  PubMed  Google Scholar 

  274. Locke RM, Rial E, Scott ID, Nicholls DG (1982) Fatty acids as acute regulators of the proton conductance of hamster brown-fat mitochondria. Eur J Biochem 129:373–380

    CAS  PubMed  Google Scholar 

  275. Robidoux J, Martin TL, Collins S (2004) Beta-adrenergic receptors and regulation of energy expenditure: a family affair. Annu Rev Pharmacol Toxicol 44:297–323

    CAS  PubMed  Google Scholar 

  276. Cassard-Doulcier AM, Gelly C, Fox N, Schrementi J, Raimbault S et al (1993) Tissue-specific and beta-adrenergic regulation of the mitochondrial uncoupling protein gene: control by cis-acting elements in the 5′-flanking region. Mol Endocrinol 7:497–506

    CAS  PubMed  Google Scholar 

  277. Kozak UC, Kopecky J, Teisinger J, Enerback S, Boyer B et al (1994) An upstream enhancer regulating brown-fat-specific expression of the mitochondrial uncoupling protein gene. Mol Cell Biol 14:59–67

    PubMed Central  CAS  PubMed  Google Scholar 

  278. Collins S, Cao W, Robidoux J (2004) Learning new tricks from old dogs: beta-adrenergic receptors teach new lessons on firing up adipose tissue metabolism. Mol Endocrinol 18:2123–2131

    CAS  PubMed  Google Scholar 

  279. Patane G, Anello M, Piro S, Vigneri R, Purrello F et al (2002) Role of ATP production and uncoupling protein-2 in the insulin secretory defect induced by chronic exposure to high glucose or free fatty acids and effects of peroxisome proliferator-activated receptor-gamma inhibition. Diabetes 51:2749–2756

    CAS  PubMed  Google Scholar 

  280. Tordjman K, Standley KN, Bernal-Mizrachi C, Leone TC, Coleman T et al (2002) PPARalpha suppresses insulin secretion and induces UCP2 in insulinoma cells. J Lipid Res 43:936–943

    CAS  PubMed  Google Scholar 

  281. Takahashi A, Motomura K, Kato T, Yoshikawa T, Nakagawa Y et al (2005) Transgenic mice overexpressing nuclear SREBP-1c in pancreatic beta-cells. Diabetes 54:492–499

    CAS  PubMed  Google Scholar 

  282. Affourtit C, Brand MD (2008) On the role of uncoupling protein-2 in pancreatic beta cells. Biochim Biophys Acta 1777:973–979

    CAS  PubMed  Google Scholar 

  283. Oberkofler H, Hafner M, Felder T, Krempler F, Patsch W (2009) Transcriptional co-activator peroxisome proliferator-activated receptor (PPAR)gamma co-activator-1beta is involved in the regulation of glucose-stimulated insulin secretion in INS-1E cells. J Mol Med (Berl) 87:299–306

    CAS  Google Scholar 

  284. Li LX, Skorpen F, Egeberg K, Jorgensen IH, Grill V (2002) Induction of uncoupling protein 2 mRNA in beta-cells is stimulated by oxidation of fatty acids but not by nutrient oversupply. Endocrinology 143:1371–1377

    CAS  PubMed  Google Scholar 

  285. Li LX, Skorpen F, Egeberg K, Jorgensen IH, Grill V (2001) Uncoupling protein-2 participates in cellular defense against oxidative stress in clonal beta-cells. Biochem Biophys Res Commun 282:273–277

    CAS  PubMed  Google Scholar 

  286. Giardina TM, Steer JH, Lo SZ, Joyce DA (2008) Uncoupling protein-2 accumulates rapidly in the inner mitochondrial membrane during mitochondrial reactive oxygen stress in macrophages. Biochim Biophys Acta 1777:118–129

    CAS  PubMed  Google Scholar 

  287. Samec S, Seydoux J, Dulloo AG (1998) Interorgan signaling between adipose tissue metabolism and skeletal muscle uncoupling protein homologs: is there a role for circulating free fatty acids? Diabetes 47:1693–1698

    CAS  PubMed  Google Scholar 

  288. Solanes G, Pedraza N, Iglesias R, Giralt M, Villarroya F (2003) Functional relationship between MyoD and peroxisome proliferator-activated receptor-dependent regulatory pathways in the control of the human uncoupling protein-3 gene transcription. Mol Endocrinol 17:1944–1958

    CAS  PubMed  Google Scholar 

  289. Lanni A, Beneduce L, Lombardi A, Moreno M, Boss O et al (1999) Expression of uncoupling protein-3 and mitochondrial activity in the transition from hypothyroid to hyperthyroid state in rat skeletal muscle. FEBS Lett 444:250–254

    CAS  PubMed  Google Scholar 

  290. Solanes G, Pedraza N, Iglesias R, Giralt M, Villarroya F (2000) The human uncoupling protein-3 gene promoter requires MyoD and is induced by retinoic acid in muscle cells. FASEB J 14:2141–2143

    CAS  PubMed  Google Scholar 

  291. Busquets S, Sanchis D, Alvarez B, Ricquier D, Lopez-Soriano FJ et al (1998) In the rat, tumor necrosis factor alpha administration results in an increase in both UCP2 and UCP3 mRNAs in skeletal muscle: a possible mechanism for cytokine-induced thermogenesis? FEBS Lett 440:348–350

    CAS  PubMed  Google Scholar 

  292. Boss O, Samec S, Kuhne F, Bijlenga P, Assimacopoulos-Jeannet F et al (1998) Uncoupling protein-3 expression in rodent skeletal muscle is modulated by food intake but not by changes in environmental temperature. J Biol Chem 273:5–8

    CAS  PubMed  Google Scholar 

  293. Cadenas S, Buckingham JA, Samec S, Seydoux J, Din N et al (1999) UCP2 and UCP3 rise in starved rat skeletal muscle but mitochondrial proton conductance is unchanged. FEBS Lett 462:257–260

    CAS  PubMed  Google Scholar 

  294. Bordone L, Motta MC, Picard F, Robinson A, Jhala US et al (2006) Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 4:e31

    PubMed Central  PubMed  Google Scholar 

  295. Amat R, Solanes G, Giralt M, Villarroya F (2007) SIRT1 is involved in glucocorticoid-mediated control of uncoupling protein-3 gene transcription. J Biol Chem 282:34066–34076

    CAS  PubMed  Google Scholar 

  296. Hurtaud C, Gelly C, Bouillaud F, Levi-Meyrueis C (2006) Translation control of UCP2 synthesis by the upstream open reading frame. Cell Mol Life Sci 63:1780–1789

    CAS  PubMed  Google Scholar 

  297. Hurtaud C, Gelly C, Chen Z, Levi-Meyrueis C, Bouillaud F (2007) Glutamine stimulates translation of uncoupling protein 2mRNA. Cell Mol Life Sci 64:1853–1860

    CAS  PubMed  Google Scholar 

  298. Puigserver P, Herron D, Gianotti M, Palou A, Cannon B et al (1992) Induction and degradation of the uncoupling protein thermogenin in brown adipocytes in vitro and in vivo. Evidence for a rapidly degradable pool. Biochem J 284(Pt 2):393–398

    PubMed Central  CAS  PubMed  Google Scholar 

  299. Moazed B, Desautels M (2002) Control of proteolysis by norepinephrine and insulin in brown adipocytes: role of ATP, phosphatidylinositol 3-kinase, and p70 S6K. Can J Physiol Pharmacol 80:541–552

    CAS  PubMed  Google Scholar 

  300. Moazed B, Desautels M (2002) Differentiation-dependent expression of cathepsin D and importance of lysosomal proteolysis in the degradation of UCP1 in brown adipocytes. Can J Physiol Pharmacol 80:515–525

    CAS  PubMed  Google Scholar 

  301. Rousset S, Mozo J, Dujardin G, Emre Y, Masscheleyn S et al (2007) UCP2 is a mitochondrial transporter with an unusual very short half-life. FEBS Lett 581:479–482

    CAS  PubMed  Google Scholar 

  302. Azzu V, Mookerjee SA, Brand MD (2010) Rapid turnover of mitochondrial uncoupling protein 3. Biochem J 426:13–17

    PubMed Central  CAS  PubMed  Google Scholar 

  303. Azzu V, Brand MD (2010) Degradation of an intramitochondrial protein by the cytosolic proteasome. J Cell Sci 123:578–585

    PubMed Central  CAS  PubMed  Google Scholar 

  304. Kitiphongspattana K, Mathews CE, Leiter EH, Gaskins HR (2005) Proteasome inhibition alters glucose-stimulated (pro)insulin secretion and turnover in pancreatic {beta}-cells. J Biol Chem 280:15727–15734

    CAS  PubMed  Google Scholar 

  305. Yan FF, Lin CW, Cartier EA, Shyng SL (2005) Role of ubiquitin-proteasome degradation pathway in biogenesis efficiency of {beta}-cell ATP-sensitive potassium channels. Am J Physiol Cell Physiol 289:C1351–C1359

    PubMed Central  CAS  PubMed  Google Scholar 

  306. Kawaguchi M, Minami K, Nagashima K, Seino S (2006) Essential role of ubiquitin-proteasome system in normal regulation of insulin secretion. J Biol Chem 281:13015–13020

    CAS  PubMed  Google Scholar 

  307. Sasahara M, Nishi M, Kawashima H, Ueda K, Sakagashira S et al (2004) Uncoupling protein 2 promoter polymorphism -866G/A affects its expression in beta-cells and modulates clinical profiles of Japanese type 2 diabetic patients. Diabetes 53:482–485

    CAS  PubMed  Google Scholar 

  308. Jia JJ, Zhang X, Ge CR, Jois M (2009) The polymorphisms of UCP2 and UCP3 genes associated with fat metabolism, obesity and diabetes. Obes Rev 10:519–526

    CAS  PubMed  Google Scholar 

  309. Dalgaard LT (2011) Genetic variance in uncoupling protein 2 in relation to obesity, type 2 diabetes, and related metabolic traits: focus on the functional -866G>A promoter variant (rs659366). J Obes 2011:340241

    PubMed Central  PubMed  Google Scholar 

  310. Souza BM, Assmann TS, Kliemann LM, Gross JL, Canani LH et al (2011) The role of uncoupling protein 2 (UCP2) on the development of type 2 diabetes mellitus and its chronic complications. Arq Bras Endocrinol Metabol 55:239–248

    PubMed  Google Scholar 

  311. Liu J, Li J, Li WJ, Wang CM (2013) The role of uncoupling proteins in diabetes mellitus. J Diabetes Res 2013:585897

    PubMed Central  PubMed  Google Scholar 

  312. Boss O, Hagen T, Lowell BB (2000) Uncoupling proteins 2 and 3: potential regulators of mitochondrial energy metabolism. Diabetes 49:143–156

    CAS  PubMed  Google Scholar 

  313. Nedergaard J, Cannon B (2003) The ‘novel’ ‘uncoupling’ proteins UCP2 and UCP3: What do they really do? Pros and cons for suggested functions. Exp Physiol 88:65–84

    CAS  PubMed  Google Scholar 

  314. Boudina S, Sena S, O’Neill BT, Tathireddy P, Young ME et al (2005) Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation 112:2686–2695

    PubMed  Google Scholar 

  315. Hoeks J, Hesselink MK, van Bilsen M, Schaart G, van der Vusse GJ et al (2003) Differential response of UCP3 to medium versus long chain triacylglycerols; manifestation of a functional adaptation. FEBS Lett 555:631–637

    CAS  PubMed  Google Scholar 

  316. Laskowski KR, Russell RR 3rd (2008) Uncoupling proteins in heart failure. Curr Heart Fail Rep 5:75–79

    PubMed Central  CAS  PubMed  Google Scholar 

  317. Nabben M, Hoeks J (2008) Mitochondrial uncoupling protein 3 and its role in cardiac- and skeletal muscle metabolism. Physiol Behav 94:259–269

    CAS  PubMed  Google Scholar 

  318. Van der Lee KA, Willemsen PH, Samec S, Seydoux J, Dulloo AG et al (2001) Fasting-induced changes in the expression of genes controlling substrate metabolism in the rat heart. J Lipid Res 42:1752–1758

    PubMed  Google Scholar 

  319. Young ME, Patil S, Ying J, Depre C, Ahuja HS et al (2001) Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated receptor (alpha) in the adult rodent heart. FASEB J 15:833–845

    CAS  PubMed  Google Scholar 

  320. Lee CK, Allison DB, Brand J, Weindruch R, Prolla TA (2002) Transcriptional profiles associated with aging and middle age-onset caloric restriction in mouse hearts. Proc Natl Acad Sci USA 99:14988–14993

    PubMed Central  CAS  PubMed  Google Scholar 

  321. Kahaly GJ, Dillmann WH (2005) Thyroid hormone action in the heart. Endocr Rev 26:704–728

    CAS  PubMed  Google Scholar 

  322. Jekabsons MB, Gregoire FM, Schonfeld-Warden NA, Warden CH, Horwitz BA (1999) T(3) stimulates resting metabolism and UCP-2 and UCP-3 mRNA but not nonphosphorylating mitochondrial respiration in mice. Am J Physiol 277:E380–E389

    CAS  PubMed  Google Scholar 

  323. Barbe P, Larrouy D, Boulanger C, Chevillotte E, Viguerie N et al (2001) Triiodothyronine-mediated up-regulation of UCP2 and UCP3 mRNA expression in human skeletal muscle without coordinated induction of mitochondrial respiratory chain genes. FASEB J 15:13–15

    CAS  PubMed  Google Scholar 

  324. Lanni A, Moreno M, Lombardi A, Goglia F (2003) Thyroid hormone and uncoupling proteins. FEBS Lett 543:5–10

    CAS  PubMed  Google Scholar 

  325. Boehm EA, Jones BE, Radda GK, Veech RL, Clarke K (2001) Increased uncoupling proteins and decreased efficiency in palmitate-perfused hyperthyroid rat heart. Am J Physiol Heart Circ Physiol 280:H977–H983

    CAS  PubMed  Google Scholar 

  326. Short KR, Nygren J, Barazzoni R, Levine J, Nair KS (2001) T(3) increases mitochondrial ATP production in oxidative muscle despite increased expression of UCP2 and -3. Am J Physiol Endocrinol Metab 280:E761–E769

    CAS  PubMed  Google Scholar 

  327. Taegtmeyer H, Razeghi P, Young ME (2002) Mitochondrial proteins in hypertrophy and atrophy: a transcript analysis in rat heart. Clin Exp Pharmacol Physiol 29:346–350

    CAS  PubMed  Google Scholar 

  328. Young ME, Laws FA, Goodwin GW, Taegtmeyer H (2001) Reactivation of peroxisome proliferator-activated receptor alpha is associated with contractile dysfunction in hypertrophied rat heart. J Biol Chem 276:44390–44395

    CAS  PubMed  Google Scholar 

  329. Teshima Y, Akao M, Jones SP, Marban E (2003) Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ Res 93:192–200

    CAS  PubMed  Google Scholar 

  330. McLeod CJ, Aziz A, Hoyt RF Jr, McCoy JP Jr, Sack MN (2005) Uncoupling proteins 2 and 3 function in concert to augment tolerance to cardiac ischemia. J Biol Chem 280:33470–33476

    CAS  PubMed  Google Scholar 

  331. Bodyak N, Rigor DL, Chen YS, Han Y, Bisping E et al (2007) Uncoupling protein 2 modulates cell viability in adult rat cardiomyocytes. Am J Physiol Heart Circ Physiol 293:H829–H835

    CAS  PubMed  Google Scholar 

  332. Cabrera JA, Ziemba EA, Colbert R, Kelly RF, Kuskowski M et al (2012) Uncoupling protein-2 expression and effects on mitochondrial membrane potential and oxidant stress in heart tissue. Transl Res 159:383–390

    PubMed Central  CAS  PubMed  Google Scholar 

  333. Ozcan C, Palmeri M, Horvath TL, Russell KS, Russell RR 3rd (2013) Role of uncoupling protein 3 in ischemia-reperfusion injury, arrhythmias, and preconditioning. Am J Physiol Heart Circ Physiol 304:H1192–H1200

    PubMed Central  CAS  PubMed  Google Scholar 

  334. Perrino C, Schiattarella GG, Sannino A, Pironti G, Petretta MP et al (2013) Genetic deletion of uncoupling protein 3 exaggerates apoptotic cell death in the ischemic heart leading to heart failure. J Am Heart Assoc 2:e000086

    PubMed Central  PubMed  Google Scholar 

  335. Noma T, Nishiyama A, Mizushige K, Murakami K, Tsuji T et al (2001) Possible role of uncoupling protein in regulation of myocardial energy metabolism in aortic regurgitation model rats. FASEB J 15:1206–1208

    CAS  PubMed  Google Scholar 

  336. Murakami K, Mizushige K, Noma T, Tsuji T, Kimura S et al (2002) Perindopril effect on uncoupling protein and energy metabolism in failing rat hearts. Hypertension 40:251–255

    CAS  PubMed  Google Scholar 

  337. Bugger H, Guzman C, Zechner C, Palmeri M, Russell KS et al (2011) Uncoupling protein downregulation in doxorubicin-induced heart failure improves mitochondrial coupling but increases reactive oxygen species generation. Cancer Chemother Pharmacol 67:1381–1388

    PubMed Central  CAS  PubMed  Google Scholar 

  338. Murray AJ, Cole MA, Lygate CA, Carr CA, Stuckey DJ et al (2008) Increased mitochondrial uncoupling proteins, respiratory uncoupling and decreased efficiency in the chronically infarcted rat heart. J Mol Cell Cardiol 44:694–700

    CAS  PubMed  Google Scholar 

  339. Safari F, Bayat G, Shekarforoush S, Hekmatimoghaddam S, Anvari Z et al (2013) Expressional profile of cardiac uncoupling protein-2 following myocardial ischemia reperfusion in losartan- and ramiprilat-treated rats. J Renin Angiotensin Aldosterone Syst. http://jra.sagepub.com/content/early/2013/01/31/1470320312474050.full.pdf+html

  340. Safari F, Anvari Z, Moshtaghioun S, Javan M, Bayat G et al (2014) Differential expression of cardiac uncoupling proteins 2 and 3 in response to myocardial ischemia-reperfusion in rats. Life Sci 98:68–74

    CAS  PubMed  Google Scholar 

  341. McFalls EO, Sluiter W, Schoonderwoerd K, Manintveld OC, Lamers JM et al (2006) Mitochondrial adaptations within chronically ischemic swine myocardium. J Mol Cell Cardiol 41:980–988

    CAS  PubMed  Google Scholar 

  342. Almsherqi ZA, McLachlan CS, Slocinska MB, Sluse FE, Navet R et al (2006) Reduced cardiac output is associated with decreased mitochondrial efficiency in the non-ischemic ventricular wall of the acute myocardial-infarcted dog. Cell Res 16:297–305

    CAS  PubMed  Google Scholar 

  343. Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH et al (2001) Metabolic gene expression in fetal and failing human heart. Circulation 104:2923–2931

    CAS  PubMed  Google Scholar 

  344. Razeghi P, Young ME, Ying J, Depre C, Uray IP et al (2002) Downregulation of metabolic gene expression in failing human heart before and after mechanical unloading. Cardiology 97:203–209

    CAS  PubMed  Google Scholar 

  345. Jaswal JS, Keung W, Wang W, Ussher JR, Lopaschuk GD (2011) Targeting fatty acid and carbohydrate oxidation–a novel therapeutic intervention in the ischemic and failing heart. Biochim Biophys Acta 1813:1333–1350

    CAS  PubMed  Google Scholar 

  346. Vettor R, Fabris R, Serra R, Lombardi AM, Tonello C et al (2002) Changes in FAT/CD36, UCP2, UCP3 and GLUT4 gene expression during lipid infusion in rat skeletal and heart muscle. Int J Obes Relat Metab Disord 26:838–847

    CAS  PubMed  Google Scholar 

  347. Gilde AJ, van der Lee KA, Willemsen PH, Chinetti G, van der Leij FR et al (2003) Peroxisome proliferator-activated receptor (PPAR) alpha and PPARbeta/delta, but not PPARgamma, modulate the expression of genes involved in cardiac lipid metabolism. Circ Res 92:518–524

    CAS  PubMed  Google Scholar 

  348. Murray AJ, Panagia M, Hauton D, Gibbons GF, Clarke K (2005) Plasma free fatty acids and peroxisome proliferator-activated receptor alpha in the control of myocardial uncoupling protein levels. Diabetes 54:3496–3502

    CAS  PubMed  Google Scholar 

  349. Ray J, Noll F, Daut J, Hanley PJ (2002) Long-chain fatty acids increase basal metabolism and depolarize mitochondria in cardiac muscle cells. Am J Physiol Heart Circ Physiol 282:H1495–H1501

    CAS  PubMed  Google Scholar 

  350. Garvey WT, Hardin D, Juhaszova M, Dominguez JH (1993) Effects of diabetes on myocardial glucose transport system in rats: implications for diabetic cardiomyopathy. Am J Physiol 264:H837–H844

    CAS  PubMed  Google Scholar 

  351. Stanley WC, Hall JL, Hacker TA, Hernandez LA, Whitesell LF (1997) Decreased myocardial glucose uptake during ischemia in diabetic swine. Metabolism 46:168–172

    CAS  PubMed  Google Scholar 

  352. Hidaka S, Kakuma T, Yoshimatsu H, Sakino H, Fukuchi S et al (1999) Streptozotocin treatment upregulates uncoupling protein 3 expression in the rat heart. Diabetes 48:430–435

    CAS  PubMed  Google Scholar 

  353. Scheuermann-Freestone M, Madsen PL, Manners D, Blamire AM, Buckingham RE et al (2003) Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation 107:3040–3046

    CAS  PubMed  Google Scholar 

  354. Gerber LK, Aronow BJ, Matlib MA (2006) Activation of a novel long-chain free fatty acid generation and export system in mitochondria of diabetic rat hearts. Am J Physiol Cell Physiol 291:C1198–C1207

    CAS  PubMed  Google Scholar 

  355. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135

    CAS  PubMed  Google Scholar 

  356. Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298:229–317

    PubMed Central  CAS  PubMed  Google Scholar 

  357. Ishioka K, Kanehira K, Sasaki N, Kitamura H, Kimura K et al (2002) Canine mitochondrial uncoupling proteins: structure and mRNA expression of three isoforms in adult beagles. Comp Biochem Physiol B: Biochem Mol Biol 131:483–489

    Google Scholar 

  358. Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83:1113–1151

    CAS  PubMed  Google Scholar 

  359. Sanada S, Komuro I, Kitakaze M (2011) Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol 301:H1723–H1741

    CAS  PubMed  Google Scholar 

  360. Bell RM, Yellon DM (2012) Conditioning the whole heart–not just the cardiomyocyte. J Mol Cell Cardiol 53:24–32

    CAS  PubMed  Google Scholar 

  361. Hausenloy DJ (2013) Cardioprotection techniques: preconditioning, postconditioning and remote conditioning (basic science). Curr Pharm Des 19:4544–4563

    CAS  PubMed  Google Scholar 

  362. Brooks MJ, Andrews DT (2013) Molecular mechanisms of ischemic conditioning: translation into patient outcomes. Future Cardiol 9:549–568

    CAS  PubMed  Google Scholar 

  363. Diano S, Matthews RT, Patrylo P, Yang L, Beal MF et al (2003) Uncoupling protein 2 prevents neuronal death including that occurring during seizures: a mechanism for preconditioning. Endocrinology 144:5014–5021

    CAS  PubMed  Google Scholar 

  364. Mattiasson G, Shamloo M, Gido G, Mathi K, Tomasevic G et al (2003) Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nat Med 9:1062–1068

    CAS  PubMed  Google Scholar 

  365. Miller TD, Christian TF, Hopfenspirger MR, Hodge DO, Gersh BJ et al (1995) Infarct size after acute myocardial infarction measured by quantitative tomographic 99mTc sestamibi imaging predicts subsequent mortality. Circulation 92:334–341

    CAS  PubMed  Google Scholar 

  366. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W et al (1997) Apoptosis in the failing human heart. N Engl J Med 336:1131–1141

    CAS  PubMed  Google Scholar 

  367. Bienengraeber M, Ozcan C, Terzic A (2003) Stable transfection of UCP1 confers resistance to hypoxia/reoxygenation in a heart-derived cell line. J Mol Cell Cardiol 35:861–865

    CAS  PubMed  Google Scholar 

  368. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    CAS  PubMed  Google Scholar 

  369. Bers DM (2008) Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70:23–49

    CAS  PubMed  Google Scholar 

  370. Kranias EG, Hajjar RJ (2012) Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome. Circ Res 110:1646–1660

    PubMed Central  CAS  PubMed  Google Scholar 

  371. Trenker M, Malli R, Fertschai I, Levak-Frank S, Graier WF (2007) Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2 + uniport. Nat Cell Biol 9:445–452

    PubMed Central  CAS  PubMed  Google Scholar 

  372. Brookes PS, Parker N, Buckingham JA, Vidal-Puig A, Halestrap AP et al (2008) UCPs—unlikely calcium porters. Nat Cell Biol 10:1235–1237; author reply 1237–1240

  373. Turner JD, Gaspers LD, Wang G, Thomas AP (2010) Uncoupling protein-2 modulates myocardial excitation–contraction coupling. Circ Res 106:730–738

    CAS  PubMed  Google Scholar 

  374. Blanc J, Alves-Guerra MC, Esposito B, Rousset S, Gourdy P et al (2003) Protective role of uncoupling protein 2 in atherosclerosis. Circulation 107:388–390

    CAS  PubMed  Google Scholar 

  375. Oberkofler H, Iglseder B, Klein K, Unger J, Haltmayer M et al (2005) Associations of the UCP2 gene locus with asymptomatic carotid atherosclerosis in middle-aged women. Arterioscler Thromb Vasc Biol 25:604–610

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

This manuscript has not been, nor will be published elsewhere, has been read and is submitted with the approval of all authors, all of which participated in the writing of the manuscript with no conflict of interest in its publication in Heart Failure Reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Marín-García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhmedov, A.T., Rybin, V. & Marín-García, J. Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart. Heart Fail Rev 20, 227–249 (2015). https://doi.org/10.1007/s10741-014-9457-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-014-9457-4

Keywords

Navigation