Skip to main content
Log in

Mechanists Must be Holists Too! Perspectives from Circadian Biology

  • Published:
Journal of the History of Biology Aims and scope Submit manuscript

Abstract

The pursuit of mechanistic explanations in biology has produced a great deal of knowledge about the parts, operations, and organization of mechanisms taken to be responsible for biological phenomena. Holist critics have often raised important criticisms of proposed mechanistic explanations, but until recently holists have not had alternative research strategies through which to advance explanations. This paper argues both that the results of mechanistic strategies has forced mechanists to confront ways in which whole systems affect their components and that new representational and modeling strategies are providing tools for understanding these effects of whole systems upon components. Drawing from research on the mechanism responsible for circadian rhythms in mammals, I develop two examples in which mechanistic analysis is being integrated into a more holist perspective: research revealing intercellular integration of circadian mechanisms with those involved in cell metabolism and research revealing that stable␣rhythms are dependent on how individual cells in the suprachiasmatic nucleus synchronize with each other to generate regular rhythms. Tools such as network diagramming and computational modeling are providing means to integrate mechanistic models into accounts of whole systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, G. E. 1979. Life Science in the Twentieth Century. London: Cambridge University Press.

    Google Scholar 

  • Barabási, A.-L. and Bonabeau, E. 2003. “Scale-Free Networks.” Scientific American 288: 50–59.

    Article  Google Scholar 

  • Bass, J., and Takahashi, J. S. 2010. “Circadian Integration of Metabolism and Energetics.” Science 330: 1349–354.

  • Bechtel, W. 2006. Discovering Cell Mechanisms: The Creation of Modern Cell Biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bechtel, W. 2011. “Mechanism and Biological Explanation.” Philosophy of Science 78: 533–557.

    Article  Google Scholar 

  • Bechtel, W. 2015. “Can mechanistic Explanation be Reconciled with Scale-Free Constitution and Dynamics?”Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences. 53: 84–93.

    Article  Google Scholar 

  • Bechtel, W. and Richardson, R. C. (1993/2010). Discovering Complexity: Decomposition and Localization as Strategies in Scientific Research. Cambridge, MA: MIT Press. 1993 edition published by Princeton University Press.

  • Bernard, S., Gonze, D., Čajavec, B., Herzel, H., and Kramer, A. 2007. “Synchronization-Induced Rhythmicity of Circadian Oscillators in the Suprachiasmatic Nucleus.” PLoS Computational Biology 3: e68.

    Article  Google Scholar 

  • Bunger, M. K., Wilsbacher, L. D., Moran, S. M., Clendenin, C., Radcliffe, L. A., Hogenesch, J. B., Simon, M. C., Takahashi, J. S., and Bradfield, C. A. 2000. “Mop3 Is an Essential Component of the Master Circadian Pacemaker in Mammals.” Cell, 103: 1009–1017.

  • Coleman, W. 1971. Biology in the Nineteenth Century: Problems of Form, Function, and Transformation. New York: Wiley.

    Google Scholar 

  • De Mairan, J.-J. 1729. “Observation Botanique.” Histoire de l’Academie Royale Sciences 35: 36.

    Google Scholar 

  • Enright, J. T. 1980. “Temporal Precision in Circadian Systems: A Reliable Neuronal Clock from Unreliable Components?” Science 209: 1542–1545.

    Article  Google Scholar 

  • Goldbeter, A. 1995. “A Model for Circadian Oscillations in the Drosophila Period Protein (PER).” Proceedings of the Royal Society of London. B: Biological Sciences 261: 319–324.

    Article  Google Scholar 

  • Gonze, D., Bernard, S., Waltermann, C., Kramer, A., and Herzel, H. 2005. “Spontaneous Synchronization of Coupled Circadian Oscillators.” Biophysical Journal 89: 120–129.

    Article  Google Scholar 

  • Goodwin, B. C. 1965. “Oscillatory Behavior in Enzymatic Control Processes.” Adv Enzyme Regul 3: 425–438.

    Article  Google Scholar 

  • Green, S., Levy, A., and Bechtel, W. 2014. “Design Sans Adaptation.” European Journal for Philosophy of Science 5: 15–29.

    Article  Google Scholar 

  • Green, S. and Wolkenhauer, O. 2013. “Tracing Organizing Principles: Learning from the History of Systems Biology.” History and Philososophy of the Life Sciences 35: 553–576.

    Google Scholar 

  • Hafner, M., Koeppl, H., and Gonze, D. 2012. “Effect of Network Architecture on Synchronization and Entrainment Properties of the Circadian Oscillations in the Suprachiasmatic Nucleus.” Plos Computational Biology 8: e1002419.

    Article  Google Scholar 

  • Hardin, P. E., Hall, J. C., and Rosbash, M. 1990. “Feedback of the Drosophila Period Gene Product on Circadian Cycling of its Messenger RNA Levels.” Nature 343: 536–540.

    Article  Google Scholar 

  • Herzog, E. D., Aton, S. J., Numano, R., Sakaki, Y., and Tei, H. 2004. “Temporal Precision in the Mammalian Circadian System: A Reliable Clock from Less Reliable Neurons.” Journal of Biological Rhythms 19: 35–46.

    Article  Google Scholar 

  • Hogenesch, J. B., Panda, S., Kay, S. A., and Takahashi, J. S. 2004. “Circadian Transcriptional Output in the SCN and Liver of the Mouse.” JAG Derek, J Chadwick (eds.), Molecular Clocks and Light Signalling. New York:Wiley, pp. 171–183.

    Google Scholar 

  • Jordan, S.D. and Lamia, K. A. 2013. “AMPK at the Crossroads of Circadian Clocks and Metabolism.” Molecular and Cellular Endocrinology 366: 163–169.

    Article  Google Scholar 

  • Konopka, R.J. and Benzer, S. 1971. “Clock Mutants of Drosophila melanogaster.” Proceedings of the National Academy of Sciences (USA) 89: 2112–2116.

    Article  Google Scholar 

  • Lamia, K. A., Sachdeva, U. M., DiTacchio, L., Williams, E. C., Alvarez, J. G., Egan, D. F., Vasquez, D. S., Juguilon, H., Panda, S., Shaw, R. J., Thompson, C. B., and Evans, R. M. 2009. “AMPK Regulates the Circadian Clock by Cryptochrome Phosphorylation and Degradation.” Science 326: 437–440.

    Article  Google Scholar 

  • Leloup, J.-C. and Goldbeter, A. 2008. “Modeling the Circadian Clock: From Molecular Mechanism to Physiological Disorders.” BioEssays 30: 590–600.

    Article  Google Scholar 

  • Liu, A. C., Welsh, D. K., Ko, C. H., Tran, H. G., Zhang, E. E., Priest, A. A., Buhr, E. D., Singer, O., Meeker, K., Verma, I. M., Doyle, F. J., Takahashi, J. S., and Kay, S. A. 2007. “Intercellular Coupling Confers Robustness Against Mutations in the SCN Circadian Clock Network.” Cell 129: 605–616.

    Article  Google Scholar 

  • Machamer, P., Darden, L., and Craver, C. F. 2000. “Thinking About Mechanisms.” Philosophy of Science 67: 1–25.

    Article  Google Scholar 

  • Moore, R. Y. 1973. “Retinohypothalamic Projection in Mammals: A Comparative Study.” Brain Research 49: 403–409.

    Article  Google Scholar 

  • Moore, R. Y. and Eichler, V. B. 1972. “Loss of a Circadian Adrenal Corticosterone Rhythm Following Suprachiasmatic Lesions in the Rat.” Brain Research 42: 201–206.

    Article  Google Scholar 

  • Nakahata, Y., Grimaldi, B., Sahar, S., Hirayama, J., and Sassone-Corsi, P. 2007. “Signaling to the Circadian Clock: Plasticity by Chromatin Remodeling.” Current Opinion in Cell Biology 19: 230–237.

    Article  Google Scholar 

  • Ruderman, N. B., Julia, X., Nelson, L., Cacicedo, J. M., Saha, A. K., Lan, F., and Ido, Y. 2010. “AMPK and SIRT1: A Long-Standing Partnership?” American Journal of Physiology—Endocrinology and Metabolism 298: E751–E760.

    Article  Google Scholar 

  • To, T.-L., Henson, M. A., Herzog, E. D., and Doyle, F.J., III. 2007. “A Molecular Model for Intercellular Synchronization in the Mammalian Circadian Clock.” Biophysical Journal 92: 3792–3803.

    Article  Google Scholar 

  • van den Pol, A. N. 1980. “The Hypothalamic Suprachiasmatic Nucleus of Rat: Intrinsic Anatomy.” The Journal of Comparative Neurology 191: 661–702.

    Article  Google Scholar 

  • van der Horst, G. T. J, Muijtjens, M., Kobayashi, K., Takano, R., Kanno, S.-I., Takao, M., de Wit, J., Verkerk, A., van der Eker, E. P. M., van Leenen, D., Buijs, R., Bootsma, D., Hoeijmakers, J. H. J., and Yasui, A. 1999. “Mammalian Cry1 and Cry2 are Essential for Maintenance of Circadian Rhythms.” Nature 398: 627–630.

    Article  Google Scholar 

  • Vasalou, C., Herzog, E. D., and Henson, M. A. 2009. “Small-World Network Models of Intercellular Coupling Predict Enhanced Synchronization in the Suprachiasmatic Nucleus.” Journal of Biological Rhythms 24: 243–254.

    Article  Google Scholar 

  • Venkataraman, A., Ballance, H., and Hogenesch, J. B. 2013. “The Role of the Circadian System in Homeostasis.” A. J. M. Walhout, M. Vidal, and J. Dekker (eds.), Handbook of Systems Biology: Concepts and insights. Amsterdam: Elsevier, pp. 407–426.

    Chapter  Google Scholar 

  • Vitaterna, M. H., King, D. P., Chang, A.-M., Kornhauser, J. M., Lowrey, P. L., McDonald, J. D., Dove, W. F., Pinto, L. H., Turek, F. W., and Takahashi, J. S. 1994. “Mutagenesis and Mapping of a Mouse Gene, Clock, Essential for Circadian Behavior.” Science 264: 719–725.

    Article  Google Scholar 

  • Watts, D. and Strogratz, S. 1998. “Collective Dynamics of Small Worlds.” Nature 393: 440–442.

    Article  Google Scholar 

  • Welsh, D. K., Logothetis, D. E., Meister, M., and Reppert, S. M. 1995. “Individual Neurons Dissociated from Rat Suprachiasmatic Nucleus Express Independently Phased Circadian Firing Rhythms.” Neuron 14: 697–706.

    Article  Google Scholar 

  • Welsh, D. K., Takahashi, J. S., and Kay, S. A. 2010. “Suprachiasmatic Nucleus: Cell Autonomy and Network Properties.” Annual Review of Physiology 72: 551.

    Article  Google Scholar 

  • Welsh, D. K., Yoo, S.-H., Liu, A. C., Takahashi, J. S., and Kay, S. A. 2004. “Bioluminescence Imaging of Individual Fibroblasts Reveals Persistent, Independently Phased Circadian Rhythms of Clock Gene Expression.” Current Biology 14: 2289–2295.

    Article  Google Scholar 

  • Westerhoff, H., Verma, M., Bruggeman, F., Kolodkin, A., Swat, M., Hayes, N., Nardelli, M., Bakker, B., and Snoep, J. 2011. “From Silicon Cellsilicon cell to Silicon Humansilicon Human.” B Booß-Bavnbek, B. Klösgen, J. Larsen, F. Pociot, and E. Renström (eds.), BetaSys, vol. 2. New York: Springer, pp. 437–458.

    Chapter  Google Scholar 

  • Zhang, E. E and Kay, S. A. 2010. “Clocks not Winding Down: Unravelling Circadian Networks.” Nature Reviews Molecular and Cell Biology 11: 764–776.

    Article  Google Scholar 

  • Zhang, E. E., Liu, A. C., Hirota, T., Miraglia, L. J., Welch, G., Pongsawakul, P. Y., Liu, X., Atwood, A., Huss, J. W., Janes, J., Su, A. I., Hogenesch, J. B., and Kay, S. A. 2009. “A genome-wide RNAi Screen for Modifiers of The Circadian Clock in Human Cells.” Cell 139: 199–210.

    Article  Google Scholar 

  • Zylka, M. J., Shearman, L. P., Weaver, D. R., and Reppert, S. M. 1998. “Three period Homologs in Mammals: Differential Light Responses in the Suprachiasmatic Circadian Clock and Oscillating Transcripts Outside of Brain.” Neuron 20: 1103–1110.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Bechtel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bechtel, W. Mechanists Must be Holists Too! Perspectives from Circadian Biology. J Hist Biol 49, 705–731 (2016). https://doi.org/10.1007/s10739-016-9439-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10739-016-9439-6

Keywords

Navigation