, Volume 17, Issue 4, pp 389-414,
Open Access This content is freely available online to anyone, anywhere at any time.
Date: 11 Sep 2010

Local search for the surgery admission planning problem


We present a model for the surgery admission planning problem, and a meta-heuristic algorithm for solving it. The problem involves assigning operating rooms and dates to a set of elective surgeries, as well as scheduling the surgeries of each day and room. Simultaneously, a schedule is created for each surgeon to avoid double bookings. The presented algorithm uses simple Relocate and Two-Exchange neighbourhoods, governed by an iterated local search framework. The problem’s search space associated with these move operators is analysed for three typical fitness surfaces, representing different compromises between patient waiting time, surgeon overtime, and waiting time for children in the morning on the day of surgery. The analysis shows that for the same problem instances, the different objectives give fitness surfaces with quite different characteristics. We present computational results for a set of benchmarks that are based on the admission planning problem in a chosen Norwegian hospital.