Alidaee, B., G.A. Kochenberger, and A. Ahmadian. (1994). “0-1 Quadratic Programming Approach for the Optimal Solution of Two Scheduling Problems.”

*International Journal of Systems Science* 25, 401–408.

Google ScholarAlkhamis, T.M., M. Hasab, and M.A. Ahmed. (1998). “Simulated Annealing for the Unconstrained Quadratic Pseudo-Boolean Function.”

*European Journal of Operational Research* 108, 641–652.

Google ScholarAmini, M.M., B. Alidaee, and G.A. Kochemberger. (1999). “A Scatter Search Approach to Unconstrained Quadratic Binary Programs.” In D. Corne, M. Dorigo, and F. Glover (eds.), *New Ideas in Optimisation*, McGraw-Hill, London, pp. 317–329.

Badics, T. (1996). *Approximation of Some Nonlinear Binary Optimization Problems*. PhD thesis, RUTCOR, Rutgers University.

Badics, T. and E. Boros. (1998). “Minimization of Half-products.” *Mathematics of Operations Research* 23, 649–660.

Barahona, F., M. Grötschel, M. Jünger, and G. Reinelt. (1988). “An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design.” *Operations Research* 36, 493–513.

Barahona, F., M. Jünger, and G. Reinelt. (1989). “Experiments in Quadratic 0-1 Programming.” *Mathematical Programming* 44, 127–137.

Beasley, J.E. (1990). ‘Or-library: Distributing Test Problems by Electronic Mail.‘

*Journal of Operations Research Society* 41, 1069–1072.

Google ScholarBeasley, J.E. (1998). “Heuristic Algorithms for the Unconstrained Binary Quadratic Programming Problem.” Technical report, Management School, Imperial College, London, UK.

Billionnet, A. and A. Sutter. (1994). “Minimization of a Quadratic Pseudo-boolean Function.”

*European Journal of Operational Research* 78, 106–115.

Google ScholarBoros, E. and P.L. Hammer. (2002). “Pseudo-Boolean Optimization.” *Discrete Applied Mathematics* 123, 155–225.

Boros, E. and P.L. Hammer. (1991). “The Max-cut Problem and Quadratic 0-1 Optimization, Polyhedral Aspects, Relaxations and Bounds.”

*Annals of Operations Research* 33, 151–180.

Google ScholarBoros, E. and A. Prékopa. (1989). “Probabilistic Bounds and Algorithms for the Maximum Satisfiability Problem.”

*Annals of Operations Research* 21, 109–126.

Google ScholarBoros, E., P.L. Hammer, M. Minoux, and D. Rader. (1999). “Optimal Cell Flipping to Minimize Channel Density in VLSI Design and Pseudo-Boolean Optimization.” *Discrete Applied Mathematics* 90, 69–88.

Boros, E., P.L. Hammer, and X. Sun. (1989). “The DDT Method for Quadratic 0-1 Optimization.” Research Report RRR 39-1989, RUTCOR, Rutgers University.

Boros, E., P.L. Hammer, R. Sun, and G. Tavares. (2006). “A Max-flow Approach to Improved Lower Bounds for Quadratic 0-1 Minimization.” Research Report RRR 7-2006, RUTCOR, Rutgers University.

Boros, E., P.L. Hammer, and G. Tavares. (2006). “Preprocessing of Unconstrained Quadratic Binary Optimization.” Research Report RRR 10-2006, RUTCOR, Rutgers University.

Boros, E., P.L. Hammer, and G. Tavares. (2007). “One-pass Heuristics for Unconstrained Quadratic Binary Optimization.” Research Report, RUTCOR, Rutgers University.

Bushnell, M.L. and I.P. Shaik. (1995). “Robust Delay Fault Built-in Self-testing Method and Apparatus.” *United States Patent # 5,422,891*, June 6.

Carter, M.W. (1984). “The Indefinite Zero-one Quadratic Problem.”

*Discrete Applied Mathematics* 7, 23–44.

Google ScholarCrama, Y. and J.B. Mazzola. (1995). “Valid Inequalities and Facets for a Hypergraph Model of the Nonlinear Knapsack and Fms Part-selection Problems.”

*Annals of Operations Research* 58, 99–128.

Google ScholarDe Simone, C., M. Diehl, M. Jünger, P. Mutzel, G. Reinelt, and G. Rinaldi. (1995). “Exact Ground States of Ising Spin Glasses: New Experimental Results with a Branch and Cut Algorithm.”

*Journal of Statistical Physics* 80, 487–496.

Google ScholarFraenkel, A.S. and P.L. Hammer. (1984). “Pseudo-Boolean Functions and Their Graphs.” *Annals of Discrete Mathematics* 20, 137–146.

Gallo, G., P.L. Hammer, and B. Simeone. (1980). “Quadratic Knapsack Problems.” *Mathematical Programming* 12, 132–149.

Garey, M.R. and D.S. Johnson. (1979). *Computers and Intractability: An Introduction to the Theory of NP-completeness*. W.H. Freeman, San Francisco.

Glover, F., G. Kochenberger, and B. Alidaee. (1998a). “Adaptative Memory Tabu Search for Binary Quadratic Programs.”

*Management Science*, 44(3), 336–345.

Google ScholarGlover, F., G.A. Kochenberger, B. Alidaee, and M. Amini. (1998b). “Tabu Search with Critical Event Memory: An Enhanced Application for Binary Quadratic Programs.” In S. Voss, S. Martello, I. Osman, and C. Roucairol (eds.), *Meta-heuristics—Advances and Trends in Local Search Paradigms for Optimization*, Kluwer Academic Publishers, pp. 83–109.

Glover, F., B. Alidaee, C. Rego, and G. Kochenberger. (2002). “One-pass Heuristics for Large-scale Unconstrained Binary Quadratic Problems.”

*European Journal of Operational Research* 137, 272–287.

Google ScholarGulati, S.K., S.K. Gupta, and A.K. Mittal. (1980). “Unconstrained Quadratic Bivalent Programming Problem.”

*European Journal of Operational Research* 15, 121–125.

Google ScholarHammer, P.L. (1968). “Plant Location—A Pseudo-boolean Approach.”

*Israel Journal of Technology* 6, 330–332.

Google ScholarHammer, P.L. (1977). “Pseudo-Boolean Remarks on Balanced Graphs.” *International Series of Numerical Mathematics* 36, 69–78.

Hammer, P.L. and S. Rudeanu. (1968). *Boolean Methods in Operations Research and Related Areas*. Springer-Verlag, Berlin, Heidelberg, New York.

Hammer, P.L. and E. Shliffer. (1971). “Applications of Pseudo-boolean Methods to Economic Problems.” *Theory and Decision* 1, 296–308.

Hammer, P.L., I. Rosenberg, and S. Rudeanu. (1963). ‘On the Determination of the Minima of Pseudo-Boolean Functions.’

*Stud. Cerc. Mat.* 14, 359–364 (in Romanian).

Google ScholarHasab, M., T. Alkhamis, and J. Ali. (2000). “A Comparison between Simulated Annealing, Genetic Algorithm and Tabu Search Methods for the Unconstrained Quadratic Pseudo-Boolean Function.”

*Computers & Industrial Engineering* 38, 323–340.

Google ScholarHelmberg, C. and F. Rendl. (1998). “Solving Quadratic (0,1)-problems by Semidefinite Programs and Cutting Planes.”

*Mathematical Programming* 82, 291–315.

Google ScholarHillier, F.S. (1969). *The Evaluation of Risky Interrelated Investments*. North-Holland, Amsterdam.

Jünger, M., A. Martin, G. Reinelt, and R. Weismantel. (1994). “Quadratic 0-1 Optimization and a Decomposition Approach for the Placement of Electronic Circuits.”

*Mathematical Programming* 63, 257–279.

Google ScholarKalantari, B. and A. Bagchi. (1990). “An Algorithm for Quadratic Zero-one Programs.”

*Naval Research Logistics* 37, 527–538.

Google ScholarKatayama, K. and H. Narihisa. (2001). “Performance of Simulated Annealing-based Heuristic for the Unconstrained Binary Quadratic Programming Problem.”

*European Journal of Operational Research* 134, 103–119.

Google ScholarKatayama, K., M. Tani, and H. Narihisa. (2000). “Solving Large Binary Quadratic Programming Problems by Effective Genetic Local Search Algorithm.” In L.D. Whitley, D.E. Goldberg, E. Cantú-Paz, L. Spector, I.C. Parmee, and H.-G. Beyer (eds.), *Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2000)*. Morgan Kauffman, pp. 643–650.

Krarup, J. and P.M. Pruzan. (1978). “Computer-aided Layout Design.” *Mathematical Programming Study* 9, 75–94.

Kubiak, W. (1995). “New Results on the Completion Time Variance Minimization.” *Discrete Applied Mathematics* 58, 157–168.

Laughhunn, D.J. (1970). “Quadratic Binary Programming with Applications to Capital Budgeting Problems.”

*Operations Research* 18, 454–461.

Google ScholarLaughhunn, D.J. and D.E. Peterson. (1971). “Computational Experience with Capital Expenditure Programming Models Under Risk.

*J. Business Finance* 3, 43–48.

Google ScholarLiu, W., D. Wilkins, and B. Alidaee. (2005). “A Hybrid Multi-exchange Local Search for Unconstrained Binary Quadratic Program.” Technical Report HCES-09-05, Hearin Center for Enterprise Science, University of Mississippi.

Lodi, A., K. Allemand, and T. M. Liebling. (1999). “An Volutionary Heuristic for Quadratic 0-1 Programming.”

*European Journal of Operational Research* 119, 662–670.

Google ScholarMcBride, R.D. and J.S. Yormark. (1980). “An Implicit Enumeration Algorithm for Quadratic Integer Programming.”

*Management Science* 26, 282–296.

Google ScholarMerz, P. and B. Freisleben. (1999). “Genetic Algorithms for Binary Quadratic Programming.” In *Proceedings of the 1999 International Genetic and Evolutionary Computation Conference (GECCO’99)*, pp. 417–424.

Merz, P. and Freisleben, B. (2002). “Greedy and Local Search Heuristics for the Unconstrained Binary Quadratic Programming Problem.”

*Journal of Heuristics* 8(2), 197–213.

Google ScholarMerz, P. and K. Katayama. (2004). “Memetic Algorithms for the Unconstrained Binary Quadratic Programming Problem.”

*Biosystems* 78(1–3), 99–118.

Google ScholarPalubeckis, G. (2004). “Multistart Tabu Search Strategies for the Unconstrained Binary Quadratic Optimization Problem.”

*Annals of Operations Research* 131, 259–282.

Google ScholarPalubeckis, G. (1995). “A Heuristic-based Branch and Bound Algorithm for Unconstrained Quadratic Zero-one Programming.”

*Computing* 54, 283–301.

Google ScholarPalubeckis, G. and A. Tomkevièius. (2002). “Grasp Implementations for the Uncostrained Binary Quadratic Optimization Problem.”

*Information Technology and Control* 24(3), 14–20.

Google ScholarPapaioannou, S.G. (1977). “Optimal Test Generation in Combinational Networks by Pseudo-Boolean Programming.”

*IEEE Transactions on Computers* 26, 553–560.

Google ScholarPardalos, P.M. (1991). “Construction of Test Problems in Quadratic Bivalent Programming.

*ACM Transactions on Mathematical Software* 17(1), 74–87.

Google ScholarPardalos, P.M. and S Jha. (1992). “Complexity of Uniqueness and Local Search in Quadratic 0-1 Programming.”

*Operations Research Letters* 11, 119–123.

Google ScholarPardalos, P.M. and G.P. Rodgers. (1990). “Computational Aspects of a Branch and Bound Algorithm for Quadratic 0-1 Programming.”

*Computing* 45, 131–144.

Google ScholarPardalos, P.M. and G.P. Rodgers. (1992). “A Branch and Bound Algorithm for the Maximum Clique Problem.”

*Computers and Operations Research* 19, 363–375.

Google ScholarPardalos, P.M. and J. Xue. (1994). “The Maximum Clique Problem.”

*Journal of Global Optimization* 4, 301–328.

Google ScholarPhillips, A.T. and J.B. Rosen. (1994). “A Quadratic Assignment Formulation for the Molecular Conformation Problem.”

*Journal of Global Optimization* 4, 229–241.

Google ScholarPicard, J.C. and H.D. Ratliff. (1975). “Minimum Cuts and Related Problems.” *Networks* 5, 357–370.

Picard, J.C. and H.D. Ratliff. (1978). “A Cut Approach to the Rectilinear Facility Location Problem.”

*Operations Research* 26, 422–433.

Google ScholarRanyard, R.H. (1976). “An Algorithm for Maximum Likelihood Ranking and Slater’s i from Paired Comparisons.”

*British Journal of Mathematical and Statistical Psychology* 29, 242–248.

Google ScholarRao, M.R. (1971). “Cluster Analysis and Mathematical Programming.”

*Journal of the American Statistical Association* 66, 622–626.

Google ScholarRosenberg, I.G. (1972). “0-1 Optimization and Non-linear Programming.” *Revue Française d’Automatique, d’Informatique et de Recherche Opérationnelle (Série Bleue)* 2, 95–97.

Shaik, I.P. (1996). *An Optimization Approach to Robust Delay-fault Built-in Testing*.” PhD thesis, Electrical Engineering Department, Rutgers University.

Simeone, B. (1979). *Quadratic 0-1 Programming, Boolean Functions and Graphs*.” PhD thesis, University of Waterloo.

Warszawski, A. (1974). “Pseudo-Boolean Solutions to Multidimensional Location Problems.”

*Operations Research* 22, 1081–1085.

Google ScholarWeingartner, H.M. (1966). “Capital Budgeting of Interrelated Projects: Survey and Synthesis.”

*Management Science* 12, 485–516.

Google ScholarWilliams, A.C. (1985). “Quadratic 0-1 Programming Using the Roof Dual with Computational Results.” Research Report RRR 8-1985, RUTCOR, Rutgers University, December.