, Volume 6, Issue 3, pp 255-276

Market-oriented Grids and Utility Computing: The State-of-the-art and Future Directions

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Traditional resource management techniques (resource allocation, admission control and scheduling) have been found to be inadequate for many shared Grid and distributed systems, that consist of autonomous and dynamic distributed resources contributed by multiple organisations. They provide no incentive for users to request resources judiciously and appropriately, and do not accurately capture the true value, importance and deadline (the utility) of a user’s job. Furthermore, they provide no compensation for resource providers to contribute their computing resources to shared Grids, as traditional approaches have a user-centric focus on maximising throughput and minimising waiting time rather than maximising a providers own benefit. Consequently, researchers and practitioners have been examining the appropriateness of ‘market-inspired’ resource management techniques to address these limitations. Such techniques aim to smooth out access patterns and reduce the chance of transient overload, by providing a framework for users to be truthful about their resource requirements and job deadlines, and offering incentives for service providers to prioritise urgent, high utility jobs over low utility jobs. We examine the recent innovations in these systems (from 2000–2007), looking at the state-of-the-art in price setting and negotiation, Grid economy management and utility-driven scheduling and resource allocation, and identify the advantages and limitations of these systems. We then look to the future of these systems, examining the emerging ‘Catallaxy’ market paradigm. Finally we consider the future directions that need to be pursued to address the limitations of the current generation of market oriented Grids and Utility Computing systems.