Skip to main content
Log in

Allelic diversity between and within three wild annual Cicer species

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Most wild Cicer species have narrow eco-geographic amplitude. Likewise, domesticated chickpea suffers from severe adaptive limitations due to its unique evolutionary history. The wild progenitor may offer only limited adaptive allelic variation for improving the chickpea crop. Therefore, there is a need to explore allelic diversity between and within annual Cicer sp. that span diverse natural habitats. Here we characterized the allelic diversity between and within wild populations of C. pinnatifidum, C. judaicum and C. cuneatum spanning most of their documented native range in Turkey, Israel and Ethiopia. Eco-geographical analysis resulted in clear separation between the collection sites of C. cuneatum in east Africa and the other two east Mediterranean species. Analysis of molecular variance shows that only 18 % of the allelic variation accounts for differences between the three species, while 34 % was contributed from difference between populations. Interestingly, most (48 %) of the allelic variation was detected among accessions within populations. PCoA analysis confirmed the independent taxonomic and indeed the genetic integrity of the two east Mediterranean sister species C. pinnatifidum and C. judaicum. Conservation of large rich populations seems a more effective strategy than the preservation of small thin populations of annual Cicer sp. Given the relatively narrow geographic range of most annual Cicer sp., accessing germplasm lines from ecologically distinct habitats emerges as the most promising strategy for the identification of useful adaptive allelic variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbo S, Mallikarjuna N (2008) Distant hybridization in food legumes. In: Kharkwal MC (ed) Food legumes for nutritional security and sustainable agriculture. ISBPB, New Delhi

    Google Scholar 

  • Abbo S, Berger J, Turner NC (2003) Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Funct Plant Biol 30:1081–1087

    Article  Google Scholar 

  • Abbo S, Can C, Lev-Yadun S, Ozaslan M (2008) Traditional farming systems in south-eastern Turkey: the imperative of in situ conservation of endangered wild annual Cicer species. In: Maxted N, Ford-Lloyd BV, Kell SP, Iriondo JM, Dulloo ME, Turok J (eds) Crop wild relative conservation and use. CAB International

  • Abbo S, Mesghenna YT, Van Oss H (2011) Interspecific hybridization in wild Cicer sp. Plant Breed 130:150–155

    Article  Google Scholar 

  • Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186

    Article  CAS  PubMed  Google Scholar 

  • Ben-David R, Abbo S (2005) Phenological variation among Israeli populations of Cicer judaicum Boiss. Aust J Agric Res 56:1219–1225

    Article  Google Scholar 

  • Ben-David R, Lev-Yadun S, Can C, Abbo S (2006) Ecogeography and demography of Cicer judaicum Boiss., a wild annual relative of domesticated chickpea. Crop Sci 46:1360–1370

    Article  Google Scholar 

  • Ben-David R, Abbo S, Berger J (2010) Stress gradients select for ecotype formation in Cicer judaicum Boiss., a wild relative of domesticated chickpea. Genet Resour Crop Evol 57:193–202

    Article  Google Scholar 

  • Berger J, Abbo S, Turner NC (2003) Ecogeography of annual wild Cicer species. Crop Sci 43:1076–1090

    Article  Google Scholar 

  • Berger JD, Ali M, Basu PS, Chaudhary BD, Chaturvedi SK, Deshmukh PS, Dharmaraj PS, Dwivedi SK, Gangadhar GC, Gaur PM, Kumar J, Pannu RK, Siddique KHM, Singh DN, Singh DP, Singh SJ, Turner NC, Yadava HS, Yadav SS (2006) Genotype by environment studies demonstrate the critical role of phenology in adaptation of chickpea (Cicer arietinum L.) to high and low yielding environments of India. Field Crops Res 98:230–244

    Article  Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445

    Article  CAS  PubMed  Google Scholar 

  • Frenkel O, Sherman A, Abbo S, Shtienberg D (2008) Different ecological affinities and aggressiveness patterns among Didymella rabiei isolates from sympatric domesticated chickpea and wild Cicer judaicum. Phytopathology 98:600–608

    Article  CAS  PubMed  Google Scholar 

  • Frenkel O, Peever TL, Chilvers MI, Özkilinc H, Can C, Abbo S, Shtienberg D, Sherman A (2010) Ecological genetic divergence of the fungal pathogen Didymella rabiei on sympatric wild and domesticated Cicer spp. (chickpea). Appl Environ Microbiol 76:30–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Futuyma DJ (1998) Evolutionary biology, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Hedrick PW (2006) Genetic polymorphism in heterogeneous environments: the age of genomics. Annu Rev Ecol Evol Syst 37:67–93

    Article  Google Scholar 

  • Hiremath PJ, Kumar A, Penmetsa RV, Farmer A, Schlueter JA, Chamarthi SK, Whaley AM, Carrasquilla-Garcia N, Gaur PM, Upadhyaya HD, Kavi Kishor PB, Shah TM, Cook DR, Varshney RK (2012) Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotechnol J 10:716–732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar J, Abbo S (2001) Genetics of flowering time in chickpea and its bearing on productivity in semiarid environments. Adv Agron 72:107–138

    Article  CAS  Google Scholar 

  • Ladizinsky G, Adler A (1976) Genetic relationships among the annual species of Cicer L. Theor Appl Genet 48:197–203

    Article  CAS  PubMed  Google Scholar 

  • Lichtenzveig J, Scheuring C, Dodge J, Abbo S, Zhang HB (2005) Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, Cicer arietinum L. Theor Appl Genet 110:492–510

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Nayak S, Zhu H, Varghese N, Datta S, Choi H-K, Horres R, Jüngling R, Singh J, Kavi Kishor PB, Sivaramakrishnan S, Hoisington D, Kahl G, Winter P, Cook D, Varshney R (2010) Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor Appl Genet 120:1415–1441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ozkilinc H, Frenkel O, Abbo S, Eshed R, Sherman A, Shtienberg D, Ophir R, Can C (2010) A comparative study of Turkish and Israeli populations of Didymella rabiei, the ascochyta blight pathogen of chickpea. Plant Pathol 59:492–503

    Article  CAS  Google Scholar 

  • Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peleg Z, Fahima T, Abbo S, Krugman T, Nevo E, Yakir D, Saranga Y (2005) Genetic diversity for drought resistance in wild emmer wheat and its ecogeographical associations. Plant Cell Environ 28:176–191

    Article  Google Scholar 

  • Peleg Z, Saranga Y, Krugman T, Abbo S, Nevo E, Fahima T (2008) Allelic diversity associated with aridity gradient in wild emmer wheat populations. Plant Cell Environ 31:39–49

    PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pundir RPS, Reddy KN, Melak MH (1988) ICRISAT chickpea germplasm catalog: evaluation and analysis. Patancheru, India International Crops Research Institute for the Semi-arid Tropics

  • Ricketts TH, Dinerstein E, Boucher T, Brooks TM, Butchart SHM, Hoffmann M, Lamoreux JF, Morrison J, Parr M, Pilgrim JD, Rodrigues ASL, Sechrest W, Wallace GE, Berlin K, Bielby J, Burgess ND, Church DR, Cox N, Knox D, Loucks C, Luck GW, Master LL, Moore R, Naidoo R, Ridgely R, Schatz GE, Shire G, Strand H, Wettengel W, Wikramanayake E (2005) Pinpointing and preventing imminent extinctions. Proc Natl Acad Sci USA 102:18497–18501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh KB (1997) Chickpea (Cicer arietinum L.). Field Crops Res 53:161–170

    Article  Google Scholar 

  • van der Maesen LJG (1972) Cicer L., a monograph of the genus, with special reference to the chickpea (Cicer arietinum L.), its ecology and cultivation. Proefschrift Wageningen, Veenman, Wageningen

  • Varshney RK, Ribaut J-M, Buckler ES, Tuberosa R, Rafalski JA, Langridge P (2012) Can genomics boost productivity of orphan crops? Nat Biotechnol 30:1172–1176

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B, Millan T, Zhang X, Ramsay LD, Iwata A, Wang Y, Nelson W, Farmer AD, Gaur PM, Soderlund C, Penmetsa RV, Xu C, Bharti AK, He W, Winter P, Zhao S, Hane JK, Carrasquilla-Garcia N, Condie JA, Upadhyaya HD, Luo M-C, Thudi M, Gowda CLL, Singh NP, Lichtenzveig J, Gali KK, Rubio J, Nadarajan N, Dolezel J, Bansal KC, Xu X, Edwards D, Zhang G, Kahl G, Gil J, Singh KB, Datta SK, Jackson SA, Wang J, Cook DR (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    Article  CAS  PubMed  Google Scholar 

  • Winter P, Benko-Iseppon AM, Hüttel B, Ratnaparkhe M, Tullu A, Sonnante G, Pfaff T, Tekeoglu M, Santra D, Sant VJ, Rajesh PN, Kahl G, Muehlbauer FJ (2000) A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum × C. reticulatum cross: localization of resistance genes for fusarium wilt races 4 and 5. Theor Appl Genet 101:1155–1163

    Article  CAS  Google Scholar 

  • Zohary M (1972) Flora Palaestina. Israel Academy of Sciences and Humanities, Jerusalem

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Tzion Fahima, University of Haifa, Israel for providing the infrastructure required for the microsatellite analyses. We acknowledge the assistance of Dr. Roi Ben-David, Dr. Omer Frenkel, Dr. Judith Lichtenzveig and Dr. Ruth vanOss.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvi Peleg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peleg, Z., Shabtay, A. & Abbo, S. Allelic diversity between and within three wild annual Cicer species. Genet Resour Crop Evol 62, 177–188 (2015). https://doi.org/10.1007/s10722-014-0141-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-014-0141-2

Keywords

Navigation